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Abstract. Predicting the remaining cycle time of running cases is one
important use case of predictive process monitoring. Different approaches
that learn from event logs, e.g., relying on an existing representation of
the process or leveraging machine learning approaches, have been pro-
posed in literature to tackle this problem. Machine learning-based tech-
niques have shown superiority over other techniques with respect to the
accuracy of the prediction as well as freedom from knowledge about the
underlying process models generating the logs. However, all proposed ap-
proaches learn from complete traces. This might cause delays in starting
new training cycles as usually process instances might last over long time
periods of hours, days, weeks or even months.
In this paper, we propose a machine learning approach that can learn
from incomplete ongoing traces. Using a time-aware survival analysis
technique, we can train a neural network to predict the remaining cycle
time of a running case. Our approach accepts as input both complete and
incomplete traces. We have evaluated our approach on different real-life
datasets and compared it with a state of the art baseline. Results show
that our approach, in many cases, is able to outperform the baseline
approach both in accuracy and training time.

Keywords: Predictive process monitoring · Remaining time prediction
· Survival analysis · Incomplete traces

1 Introduction

Predictive process monitoring [7] is a sub-field of process mining that is concerned
with predicting an outcome of interest while an execution is still running, for
instance with the purpose of proactively taking corrective actions before things
go wrong. Different types of outcomes can be predicted, as for instance, the
remaining time for a case to finish [15,11,14], which activity to be executed
next [3,9], or the fulfillment of a certain goal [5,4]. Different techniques have
been used to tackle the prediction challenge, such as machine learning, statistical
methods, annotated transition systems and hybrid approaches [7]. However, all
these techniques require as a major input a history of complete cases, in order
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to train a model that will be used at run-time to predict the respective outcome
for running cases.

Among the techniques for predictive process monitoring, machine learning
and deep learning-based approaches have shown superiority with respect to the
accuracy of the prediction [14,17]. Yet, as known, training deep learning models
requires more resources and a large dataset to obtain better results. Moreover,
process instances generally run for long time, days, weeks or even months. A
direct threat in this case is the possibility of concept drifts [6] that render the
currently-used model for prediction useless and triggers the need to train a new
model on a larger set of traces containing newly complete traces. In such case,
the retraining has to be delayed until a sufficiently large set of newly completed
cases has been collected.

A main limitation of contemporary predictive monitoring techniques is the
need for complete traces to train their models. This causes delays of retraining
cycles until new completed cases are collected. In this paper, we alleviate this
limitation by allowing learning from ongoing cases, i.e. incomplete traces, by em-
ploying survival analysis techniques [2]. Treating incomplete traces as censored
data, we are able to train a neural network to predict the remaining time for a
running case. Compared to the state-of-the-art, our results show at least com-
parable accuracy to methods that require complete traces with better results on
several data sets; additionally, our training takes much less time to complete.

The rest of this paper is organized as follows. Section 2 summarizes the
related work. Section 3 provides the necessary details about survival analysis and
the specific techniques we employ. Our contributions are detailed in Section 4 for
the encoding of (incomplete) traces and the architecture of the neural network
and Section 5 for the experimental evaluation and comparison to the baseline
method. Finally, Section 6 concludes the paper.

2 Related Work

In general, literature on predictive process monitoring can be classified based on
the type of targeted prediction: next activity, outcome, delays or the remaining
cycle time. Due to space limitations, we will discuss the literature related to the
prediction of the remaining cycle time, as this is the focus of our work. We refer
the user to [7] for a survey on the wider domain of predictive process monitoring.

A recent survey by Verenich et al. [17] has benchmarked the different ap-
proaches for predicting the remaining cycle time of a running instance. In gen-
eral, prediction approaches have been categorized as generative or discriminative.
Generative approaches are process-aware, that is, they require a pre-existing rep-
resentation of the process whose execution generates the traces. Discriminative
approaches, instead, are process-agnostic and can learn directly from traces.

Concerning the generative approaches, in [15] the authors discover a transi-
tion system from the log and augment it with information about the remaining
time of cases; in [11] stochastic Petri nets are leveraged for making predictions;
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in [18], flow analysis is used to aggregate the remaining cycle time on the case
level over its individual activities.

Discriminative methods can rely on different approaches. Some of them lever-
age non-parametric regression models [16,12], others propose clustering-based
techniques, as the work in [1], while others rely on neural networks [14] for the
prediction of the remaining cycle time. We will use this latter approach and the
work in [14] as baseline for our work.

2.1 Baseline Approach

The baseline approach in [14] predicts the next activity in a process as well as
its timestamp. Each event occurring in the trace is transformed into a feature
vector x1, ..., xk to be fed as input to an LSTM network as follows: (i) activity
type (A), i.e., the type of the activity in a one-hot-encoding representation;
(ii) delta t (fvt1), i.e., the time between the previous and the current event
in the trace that allows the network to learn the time dependencies between
the process’ events; (iii) two time-based features, (fvt2) and (fvt3), that
correspond to the hour of the event within the day in 24-hour format and the
hour of the event since the start of the week, respectively, so as to learn when the
event has happened with respect to a working day or a working week. The LSTM
has two outputs: (i) Oka that corresponds to a one-hot-encoding representation
of the type of the next event with an extra bit representing whether or not this
event occurs at the end of the case; and (ii) Okt representing the relative time
difference between the current event and the next event. The remaining cycle
time can be computed by summing Okt for all the events from the current event
until the last event of the trace. This model needs to be trained with complete
traces, as the model needs to learn the process sequence, as well as when the
sequence ends. The model also suffers when dealing with sequences containing
loops, as loops cause the model to predict overly long sequences.

3 Background

In this section we will briefly introduce the notations we use throughout the rest
of the paper and a quick overview on survival analysis as the inspiring method
to the contribution of this paper.

3.1 Events, Trace, Logs

The occurrence of an event is the manifestation of the evolution of a running
process. Each event contains at least three pieces of information: a reference to
the activity, a reference to the process instance, and a timestamp. Events can
have more information, e.g., cost, the human resource who executed it, and the
lifecycle transition, e.g., started, completed, etc. In this paper, we require just
the three basic pieces of information.
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LetA be the set of all activities that an event can reference. The setAend ∈ A
contains end activities. Additionally, the set T is the time domain and C is the
universe of case identifiers. Finally, the set E is the universe of events. Thus, an
event e ∈ E represents the execution of some activity a ∈ A within a case c ∈ C
that occurred at time t ∈ T . A shorthand for these notations are e.a, e.c, e.t
respectively.

Definition 1 (Trace). A trace is a finite non-empty sequence of events σ ∈ E∗.
|σ| defines the length of the trace. σi ∈ E is the event at position i, 1 ≤ i ≤ |σ|. A
trace is called complete if and only if σ|σ|.a ∈ Aend, otherwise it is incomplete.

A prefix of a trace is defined as a function pre : E ∗ ×N → E∗ that returns
a sub-sequence of a trace σ up to and including the event at position i in the
trace.

A log L ⊂ E∗ is a set of traces where each trace appears at most once.

3.2 Survival Analysis and Censored-learning

Survival analysis models [2] are key players in statistical studies that focus on
analyzing the waiting duration or the remaining time until an event happens,
such as a death, failure, churn, or any other event of interest. These kinds of
models are capable of answering even more complex questions like ”What is
the probability that an event does/doesn’t happen within an amount of time
T?”, ”What is the probability distribution of the event occurrence over time?”
or ”What is the proportion of a population which will survive passed a certain
time?”.

Let T be a random variable denoting the waiting time until the occurrence
of an event, survival models provide information about the probability density
function f(t) = Pr(T = t) and the survival function S(t) = Pr(T > t), among
other functions. The probability density function gives information about the
likelihood of the occurrence of the event at time t. The survival function repre-
sents the probability of surviving until a certain time t without experiencing the
event of interest. (See Figure 1 for the difference between the two functions).

There are three types of survival models: Non-parametric, semi-parametric,
and parametric approaches [13]. Only the latter has the ability to extrapolate
or predict beyond the data time limit, since it fits the survival curve to a time
distribution. There are many suitable distributions to represent a time-based
random variable T as stated in [10], such as exponential, log-logistic, log-normal,
gamma, Poisson, Geometric, and the Weibull distribution.

A capability of survival models is the ability to learn from unobserved events
which are called “censored data”. That is, the collected data represent a snapshot
in time, where some samples have experienced the event of interest, but most of
the samples have not. Yet, these samples contain useful information telling that
“at least we have not observed an event until the time t”.
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(a) f(t) (b) S(t)

Fig. 1. Probability density function Vs. Survival function
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Fig. 2. Observed Vs. Censored events

Fig. 2 illustrates the random variable
T that represents the time to an event
of interest. We say that T is observed
when we observe the actual waiting
time within the period of our study,
hence we call it un-censored (ob-
served) event T ∈ [0, t] (e1 in Fig-
ure 2), where the event of interest
is exactly observed. We say that T
is censored when we partially know
about the event occurrence time. We
have three types of censored data [13]:

Right-censored event T ∈ [t,∞)
refers to cases that have started with
the study but the event of interest was not observed during the study time (e2
in Figure 2). Right-censored events are useful under the assumption of non-
informative censoring. That is, censoring is independent of the likelihood of
the occurrence of the event of interest. In other words, we assume that the cases
whose data are censored would have the same distribution of time to event if they
were actually observed. Interval-censored event T ∈ [a, b], where 0 < a, b < t,
rather than knowing the exact time of the event, all we know is that the event
occurred between two known time points (e3 in Figure 2). Left-censored Math-
ematically, left censored is no different from interval censoring. It indicates that
the event occurred at some point prior to the period of study. (e4 in Figure 2).

In the context of predictive process monitoring, only observed events and
right-censored events are relevant. That is because, for the set of traces used for
learning, we either know the exact end time of the trace, or we don’t capture
the trace end in our study (in case of incomplete traces).
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4 Learning from Incomplete Traces

Traditional survival models are designed to handle records with static features
that affect the waiting time. It is not meant to handle time varying features. In
the context of predictive process monitoring, cases are time varying as the same
activity may have different durations across different cases.

Martisson [8] proposed a model that benefits from the survival analysis inter-
pretation and is able to deal with the time varying features by training a gated
recurrent neural network (GRU) that captures the temporal relations between
the time steps. The network is trained to predict the parameters of the Weibull
distribution by optimizing the log of a special likelihood function to consider
both observed and censored events, as explained in Section 4.2. The Weibull
distribution turns out to be a suitable choice since it is controlled by two param-
eters α and β, that makes it flexible to interpret complex outputs, and because
of its ability to fit both discrete and continuous problems.

In our work, we adapt the network architecture of the baseline method [14]
by changing the encoding of the input traces to account for incomplete traces
(Definition 1) and adapt the likelihood function from [8] to train the network to
predict the parameters of the Weibull distribution that fits the time to the end
event of a case. We discuss these two steps in detail in the following subsections.

4.1 Neural Network Setup

Fig. 3. Network architecture

The problem of measuring the re-
maining time till a process ends can be
tackled using a similar approach like
[8]. However, the original work was de-
signed to predict the waiting time to
recurrent events, e.g. the time to the
next failure of a machine. In our case,
we are interested in the time until a
process instance ends.

To adapt the approach to the pre-
diction of the remaining time to an
end event, we kept the same loss func-
tion and Weibull parameters as in [8].
Then, we adapted the network de-
sign from many-to-many to many-to-
one to account for non-recurrent end
events.

Considering a log L, we use Nmax
to denote the length of the longest
trace σl ∈ L. We train a model for each possible prefix pre(σ, p) (Definition 1),
where σ ∈ L and p ∈ {2, 3, 4, . . . , Nmax − 1}.

As shown in Figure 3, the model consists of an input layer [X1, X2, ...Xn],
which is the vector representation of the prefix, as explained in Section 2.1,
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connected to two GRU layers; and a dense layer of 2 neurons for the output
representing the α and the β of the distribution of the random variable T for
a given trace. Having the Weibull distribution, we need to find the most likely
value in the curve, which turns out to be the mode of the distribution.

4.2 Optimization Function

Let T be a random variable for the waiting time having some parameters θ, and
t the observed cycle time, we are interested in the negative likelihood as a loss
function. In other words, we aim at maximizing the likelihood of T being around
the true observation t for complete traces or at pushing it to the right beyond
the censored point t in case of incomplete traces:

L(t, θ) ∝

{
P (T = t|θ) Observed events (complete trace)

P (T > t|θ) Censored events (incomplete trace)
(1)

This can be expressed mathematically as follows (detailed proof in [8]):

L(t, θ) ∝ log
[
fT (t)uST (t)1−u

]
= u.

[
β.log(

t

α
) + log(β)

]
−
( t
α

)β (2)

where u is the event indicator, meaning that u = 1 in case of observed events
and u = 0 in case of censored events. This is equivalent to optimizing θ to
maximize the PDF fT (t) around t for the observed cases, and maximize the
survival function ST (t) beyond t for the censored cases. Figure 4 illustrates what
the objective function aims to do.

(a) Maximize f(t) (b) Maximize S(t)

Fig. 4. Illustration of the optimization function

In order to train the neural network, we need a (t, u) pair for each observation.
For complete traces, t is the actual time till the end of the trace and u = 1 means
we observed the end of the trace. For incomplete traces, t is the time till the last
event observed (not the end event) and u = 0 means that we have not observed
the trace end till this time.
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5 Evaluation

In this section we report on the implementation, used datasets, procedure and
results of the experiments performed for the evaluation of the proposed approach
and its comparison with the baseline.

Implementation
We have used Tensorflow 2.0.1 to build and train our network. All experiments
were run on an Intel Core i7-8650U CPU @ 1.90GHz 2.11 GHz. The code for
the network and the experiments can be found on our Git hub repo.

Datasets
We have evaluated our approach on four datasets (real life logs) that are de-
scribed next.

a. Helpdesk dataset: This log contains events from a help desk ticketing
system of an Italian software company4. The process consists of 9 activities,
and all cases start with the ticket creation into the system. Each case ends
when the issue is resolved and the ticket is closed.

b. BPI’12 subprocess W dataset: 5 The log contains data from the appli-
cation procedure for financial products at a large financial institution. This
process consists of three sub-processes. Two of them have events correspond-
ing to automatic activities, whereas the third sub-process (items sub-process)
contains events for manual (human executed) tasks. We only used the items
sub-process.

c. BPI’12 subprocess W dataset with no repetition: This is the same
dataset as ”b” but without loops.

d. Environmental permit dataset: This is a log of an environmental per-
mitting process at a Dutch municipality 6. Each case refers to one permit
application.

The four datasets have very different characteristics in terms of trace length
and the number of unique activities, as shown in Figure 5 and Figure 6 respec-
tively. Datasets a and c are the simplest with few unique activities and short
traces, while dataset b contains loops in the process which affects the perfor-
mance of the baseline method. Finally, dataset d is considered to be the most
complex with very long traces and different activities. Moreover, it also presents
a large variation of the distribution of the log duration.

Experimental Procedure
Each dataset is pre-processed in order to (i) remove the traces with length below
p + 1, for each prefix p ∈ {2, ..., Nmax − 1}, with Nmax the longest trace of the
log; and (ii) build the needed features using the first p events and the time till
the last event. The dataset is then split into three equal parts: training set (TS),
validation set and test set.

4 doi:10.17632/39bp3vv62t.1
5 doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
6 doi:10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

https://github.com/fazaki/cycle_prediction
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Fig. 5. Length of traces in each dataset

Fig. 6. Unique activities per trace in each dataset

In order to evaluate the effect of censored data, we built a special training
set (TSC) composed of 50% of complete traces and 50% of incomplete traces7.
To this aim, we split the training set TS further into two sets of traces: the first
representing observed cases and the second representing censored cases, which
are simulated by randomly cutting the traces. If n is the trace length and p the
length of the prefix used for the features, the time till the last observed event
is computed looking at the event at position n, if the trace belongs to the first
set, or looking at the event in position j, where j is randomly chosen between
p+ 1 to n, if the trace belongs to the second set. For censored data, traces need
to have at least p+ 2 events.

The following three experiments have been conducted:

• Experiment 1: training on TS using the time to event approach (Section 4).
• Experiment 2: training on TS using the time to event approach and trans-

formation of the output to a new less biased space. For the output transfor-
mation we used a root cubic transformation where φ(x) = 3

√
x, and inverse

7 The choice of 50% as a fixed ratio for complete/incomplete traces is to reduce the
variables in the experiments for better comparison
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transformation where f(x) = x3, which turns out to give the best results
given the output distribution. (See Figure 7)

• Experiment 3: training on TSC using the time to event approach and
transformation of the output to a new less biased space.

We used the same hyperparameters for simplicity, and preserve the same valida-
tion and test sets per dataset and prefix throughout the 3 models. The validation
set is used to avoid over-fitting, and the test set to compute the performance.

(a) original label (b) transformed label

Fig. 7. Label distribution before and after transformation
Results
We have executed the three experiments described above and compared the
results with the ones of the baseline [14] in terms of the mean absolute error
(MAE) expressed in days. Fig 8 summarizes the results.

In general, our approach better captures long term dependencies for longer
traces (datasets b and d). The accuracy is further enhanced when transforming
the label (Experiment 2). With 50% censored data, we find that the accuracy
of the model is not harmfully impacted. Instead, it sometimes outperforms the
baseline due to its ability to further remove any bias. The number on top of each
prefix represents the number of traces used for testing. Obviously, it decreases as
the prefix increases since we have less traces matching the length criteria. Yet,
our model is able to learn from the smallest set and outperforms the baseline.

There is a little variation in performance with datasets a and c due to their
short traces and limited number of possible activities. However, we can see that
training with 50% of right-censored traces improves the model performance in
almost all the prefixes. This is due to the balance achieved from having both
observed and censored traces. In other words, when the majority of the traces
are very short, the network tends to predict zero remaining time producing a
large MAE for the large traces, affecting the overall performance. The existence
of right-censored traces reduces this tendency and forces the network to com-
promise between short and long traces. Datasets b and d are very challenging
due to their very long traces, loops, and random behavior especially in dataset
d (Fig. 6). This is obviously affecting the performance of the baseline method
since it tries to predict all the remaining events.

Our three experiments have close performance, and surprisingly having 50%
of right-censored traces did not harm the performance. This empirically proves
that incomplete traces are quite insightful and the network did learn from them.
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Fig. 8. MAE for experiments 1-3 and the baseline method for the four datasets

Fig. 9. Training duration

Fig. 9 reports the training time of
our approach compared to the base-
line. We run the training using the
setup mentioned in Section 4.1. This
huge difference in training time is ex-
pected because the network focuses
only on predicting the remaining time
instead of learning the actual events
sequence till the end of the trace.

6 Conclusion

In this paper, we present an approach to predict the remaining cycle time of
ongoing cases based on learning from incomplete traces. The approach employs
survival analysis techniques for this purpose. Our results show, in general, besides
a reduced training time, a lower MAE compared to the baseline approach. Using
incomplete traces can be useful in several cases, especially when concept drifts
occur. Waiting until collecting complete traces, indeed, might compound the
impact of degrading model performance as process instances usually take long
time to complete.

As future work, we will investigate the applicability of survival analysis tech-
niques and learning from incomplete traces to predict the outcome of a running
case. Additionally, we intend to experiment with more data sets and with differ-
ent percentages of censored traces.
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Abstract. Predictive business process monitoring (PBPM) aims to pre-
dict future process behavior during ongoing process executions based on
event log data. Especially, techniques for the next activity and times-
tamp prediction can help to improve the performance of operational busi-
ness processes. Recently, many PBPM solutions based on deep learning
were proposed by researchers. Due to the sequential nature of event log
data, a common choice is to apply recurrent neural networks with long
short-term memory (LSTM) cells. We argue, that the elapsed time be-
tween events is informative. However, current PBPM techniques mainly
use “vanilla” LSTM cells and hand-crafted time-related control flow fea-
tures. To better model the time dependencies between events, we propose
a new PBPM technique based on time-aware LSTM (T-LSTM) cells.
T-LSTM cells incorporate the elapsed time between consecutive events
inherently to adjust the cell memory. Furthermore, we introduce cost-
sensitive learning to account for the common class imbalance in event
logs. Our experiments on publicly available benchmark event logs indi-
cate the effectiveness of the introduced techniques.

Keywords: Predictive Business Process Monitoring, Deep Learning,
Recurrent Neural Network, LSTM, Time-Awareness.

1 Introduction

In the last years, a variety of predictive business process monitoring (PBPM)
techniques that base on machine learning (ML) were proposed by researchers [6]
to improve the performance of operational business processes [4]. PBPM is a
class of techniques aiming at predicting future process characteristics in running
process instances [12], like next activities, next timestamps or process-related
performance indicators. Such PBPM techniques produce predictions through
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predictive models. These models are in turn constructed based on historical
event log data.

A current trend in PBPM is to apply deep neural networks (DNNs) to learn
more accurate predictive models from event log data than with “traditional”
ML algorithms like probabilistic automata [7]. DNNs belong to the ML-sub-field
deep learning (DL) and achieve that by identifying the intricate structures in
high-dimensional data through multi-representation learning [11].

Existing DL-based PBPM techniques often rely on DNN architectures con-
sisting of out-of-the-box constructs like layers with a “vanilla” long short-term
memory (LSTM) cell [9] or state-of-the-art loss functions for parameter learning.

Event logs can be seen as sequences of events in continuous time with irregular
intervals (i.e., elapsed time between consecutive events). We argue that these
time intervals are informative in the case of event logs in PBPM. Intuitively, these
time intervals describe human behavior of executing business processes. Thus,
a time-aware PBPM technique considering information on time intervals could
potentially achieve a higher predictive quality. Time information is currently only
exploited via hand-crafted control-flow features as inputs to “vanilla” LSTM cells
[14]. To better account for the time information in event log data, we propose
a new PBPM techniques using time-aware LSTM (T-LSTM). T-LSTM extends
the “vanilla” LSTM cells by incorporating the elapsed time between consecutive
events in order to adjust the memory state and is inspired by work from Baytas
et al. [2].

Furthermore, the problem of next activity prediction is commonly modeled
as a supervised multi-class classification problem. The distribution of activi-
ties in event logs are commonly skewed. Therefore, we additionally introduce
cost-sensitive learning to address the inherent class-imbalances. The main con-
tributions of this work are summarized below:

– We introduce a time-aware LSTM model for the tasks of predicting next
activities and timestamps in PBPM

– We tackle the problem of skewed class distributions via cost-sensitive learn-
ing

We evaluate the effectiveness of our proposed techniques by conducting experi-
ments for the next activity and timestamp prediction on publicly available bench-
mark event logs commonly used for PBPM.

The remainder of the paper is structured as follows: Section 2 presents related
work on DL-based next activity and timestamp prediction. Section 3 introduces
preliminaries and the concept of a LSTM. Section 4 and 5 describes the archi-
tecture of T-LSTM and our experimental setup respectively. Then, in Sections 6
and 7, we present and discuss our results. Section 8 concludes our paper and
discusses future research directions.

2 Related Work

Inspired by the field of natural language processing (NLP), Evermann et al. [7]
applied recurrent neural network-based and LSTM-basd DNN architectures for
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the next activity and next sequence of activity prediction in PBPM. They made
use of word embeddings to encode activities of event log’s process instances.

Navarin et al. [13] used a “vanilla” LSTM-based DNN architecture for pre-
dicting the completion time of running process instances. They one-hot encoded
the activity attributes, computed temporal control-flow attributes, and consid-
ered additional real-valued or categorical context attributes.

Tax et al.[14] proposed a multitask learning approach using “vanilla” LSTM
cells for next activity and timestamp prediction respectively. Like in [13], they
one-hot encoded the activity and computed temporal control-flow features. How-
ever, the authors did not consider additional data attributes in their approach.
This work acts as a baseline for a variety of other techniques such as [17].

Khan et al. [10] introduced memory augmented neural networks (MANNs)
in PBPM. MANNs reduce the number of trainable parameters. In general, the
network’s architecture consists of an externalized state memory and two “vanilla”
LSTM cells manipulating the memory. One LSTM cell works as encoder and
the other one as decoder. Concerning the predictive quality, their approach is
comparable to the one presented in [14].

Camagro et al. [5] extended the implementation of [14] and fed the resource
attribute into the DNN model. Additionally, instead of one-hot encoding, they
applied embeddings, as proposed by Evermann et al. [7].

Taymouri et al. [15] introduced generative adversarial networks (GANs) for
the next activity and timestamp prediction. The network’s architecture com-
prises two “vanilla” LSTM cells. One for the generator and the other one for the
discriminator.

To date, several studies have investigated DNN-based PBPM techniques.
However, none of the related works models the elapsed time between two succes-
sive events. We address this gap through adapting time-aware LSTM cells [2].

Further, to the best of the our knowledge, there exists no work to date which
addresses the event class imbalance problem for the next activity and/or next
timestamp prediction. We address this gap through adapting cost-sensitive learn-
ing.

3 Background

3.1 Preliminaries

Definition 1 (Event, Trace, Event Log). An event is a tuple (c, a, ts) where
c is the case id, a is the activity (label) and ts is the timestamp. A trace is a non-
empty sequence σ =

〈
e1, . . . , e|σ|

〉
of events such that ∀i, j ∈ {1, . . . , |σ|} ei.c =

ej .c and ei.ts ≤ ej .ts, 1 ≤ i < j ≤ |σ|. An event log L is a set
{
σ1, . . . , σ|L|

}
of

traces. A trace can also be considered as a sequence of vectors which contain de-
rived control flow information or features. Formally, σ =

〈
x(1),x(2), . . . ,x(|σ|)〉 ,

where x(t) ∈ Rn×1 is a vector, and the superscript indicates the time-order upon
which the events happened. n is the number of features derived for each event.
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Definition 2 (Prefix and Label). Given a trace σ =
〈
e1, . . . , ek, . . . , e|σ|

〉
,

a prefix of length k, that is a non-empty sequence, is defined as f
(k)
p (σ) =

〈e1, . . . , ek〉, with 0 < k < |σc|. A next activity label for a prefix of length k

is defined as f
(k)
l,a (σ) = ek+1.a, whereas a next timestamp label for a prefix of

length k is defined as f
(k)
l,ts(σ) = ek+1.ts. The above definition also holds for an

input trace representing a sequence of vectors. For example, the tuple of all pos-
sible prefixes, the tuple of all possible next activity labels and the tuple of all
possible next timestamp labels for σ = 〈x(1),x(2),x(3)〉 are 〈〈x(1)〉, 〈x(1),x(2)〉〉,
〈e2.a, e3.a〉, and 〈e2.ts, e3.ts〉.

3.2 Long Short-term Memory Cells

Most of the DNN architectures proposed for the next activity and timestamp
prediction in PBPM [16] use “vanilla” LSTM cells [9]. LSTMs belong to the
class of recurrent neural networks [11] and are designed to handle temporal
dependencies in sequential prediction problems [3].

Given a sequence of inputs σ = 〈x(1),x(2),x(3), ...,x(k)〉, a LSTM computes
sequences of outputs 〈h(1),h(2),h(3), ...,h(k)〉 via the following recurrent equa-
tions:

f (t)g = sigmoid(Ufh
(t−1) + Wfx

(t) + bf ) (forget gate),

i(t)g = sigmoid(Uih
(t−1) + Wix

(t) + bi) (input gate),

c̃(t) = tanh(Ugh
(t−1) + Wgx

(t) + bg) (candidate memory),

c(t) = f (t)g ◦ c(t−1) + i(t)g ◦ c̃(t) (current memory), (1)

o(t)
g = sigmoid(Uoh

(t−1) + Wox
(t) + bo) (output gate),

h(t) = o(t)
g ◦ tanh(c(t)) (current hidden state),

∀t ∈ {1, 2, . . . , k}.

{Uf,i,g,o,Wf,i,g,o,bf,i,g,o} are trainable parameters, ◦ denotes the Hadamard
product (element-wise product), h(t) and c(t) are the hidden state and cell mem-
ory of a LSTM cell. Additionally, a LSTM cell uses four gates to manage its states
over time to avoid the problem of exploding/vanishing gradients in the case of

longer sequences [3]. f
(t)
g (forget gate) determines how much of the previous

memory is kept, i
(t)
g (input gate) controls the amount new information is stored

into memory, c̃(t) (candidate memory) defines how much information is stored

into memory and o
(t)
g (output gate) determines how much information is read

out of the memory. The hidden state h(t) is commonly forwarded to a successive
layer.
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4 Methodology

4.1 Time-Aware Long Short-term Memory Cells

“Vanilla” LSTM cells, as described in Section 3.2, assume a uniform distribution
of the elapsed time between events (∆(t) := xts

(t) − xts(t−1)). This assumption
does not hold for most event logs analyzed in PBPM though (see Fig. 4). The
elapsed time between consecutive events might have an impact on the next
activity and timestamp prediction. Hence, a LSTM cell should be able to take
irregular elapsed times into account when processing event logs.

Time-aware long short-term memory (T-LSTM) cells are an extension of the
LSTM. Fig. 1 depicts the T-LSTM cell and highlights its differences with regard
to the LSTM cell.

sigmoid tanh sigmoid

X +

X

tanh

X

𝐜(𝐭−𝟏)

𝐡(𝐭−𝟏)

𝐜(𝐭)

𝐜 (𝐭)

sigmoid

𝐡(𝐭)

𝐡(𝐭)

𝐱(𝐭)

tanh

_

𝚫(𝐭)

decay

X +

𝐨𝐠
(𝐭)

𝐢𝐠
(𝐭)𝐟𝐠

(𝐭)

𝒄∗
(𝐭−𝟏)

𝐜𝑻
(𝐭−𝟏)

ො𝒄𝑺
(𝐭−𝟏)

𝐜𝑺
(𝐭−𝟏)

Fig. 1. Illustration of a T-LSTM cell with its computational components at time step
t. The dashed and blue components indicate the extensions to the “vanilla” LSTM
cell. The previous cell memory c

(t−1)
S is adjusted to c

(t−1)
∗ (see Eq. (2)) and is then

processed together with h(t−1) and x(t) via the LSTM computations, as formalized in
Eq. (1).

The main idea behind T-LSTM is to perform a subspace decomposition of

the previous cell memory c(t−1). First, a short term memory component c
(t−1)
S is

extracted via a network. Next, the short term memory is discounted via a decay

function of the elapsed time and yields ĉ
(t−1)
s . Then, the long term memory

(c
(t−1)
T = c(t−1) − c

(t−1)
S ) is calculated. Finally, the previous cell memory is

adjusted c
(t−1)
∗ = c

(t−1)
T + ĉ

(t−1)
s . The adjusted previous memory c

(t−1)
∗ is then,

together with h(t−1) and x(t), further processed as in LSTM cells by substituting

c(t−1) with c
(t−1)
∗ in Eq. (1). The following equations summarize the T-LSTM
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specific computations for the subspace decomposition and adjustment of the
previous memory.

c
(t−1)
S = tanh(Wdc

(t−1) + bd) (short term memory),

ĉ(t−1)s = c
(t−1)
S ∗ decay(∆(t)) (discounted short term memory),

c
(t−1)
T = c(t−1) − c

(t−1)
S (long term memory), (2)

c
(t−1)
∗ = c

(t−1)
T + ĉ(t−1)s (adjusted previous memory),

... (LSTM computations as in Eq. (1)),

∀t ∈ {1, 2, . . . , k}.

Note, that we only add {Wd,bd} as trainable parameters compared to the
LSTM cell. As recommended in Baytas et al. [2], we chose decay(∆(t)) =
1/log(e + ∆(t)) since we input the elapsed times in seconds and therefore have
large values for ∆t. Any other monotonic decreasing function and scale for ∆t

would be valid as well, but our initial choice proved to be effective. The intu-
ition behind the subspace decomposition is that the short term memory should
be discounted if the elapsed time is very large, while the long term memory

should be maintained in the adjusted previous cell memory c
(t−1)
∗ . Similar as

for LSTMs, the hidden state h(t) is forwarded to successive layer for further
processing. Hence, it is straightforward to substitute LSTM with T-LSTM cells
in a given DNN architecture.

4.2 Network Architecture

We adapted the multitask architecture proposed by Tax et al. [14] as a baseline
(see Fig. 2). The predicted next activity êk+1.a is the output of a softmax ac-
tivation after the last dense layer, where the output dimension is equal to the
number of unique activity labels. êk+1.a is evaluated against the one-hot encoded
ground truth label ek+1.a by using the Cross-Entropy (CE) loss. The predicted
next timestamp êk+1.ts is a scalar output of a dense layer. We do not apply any
additional activation after the time specific dense layer to be consistent with the
implementation3 of Tax et al. [14]. êk+1.ts is compared with the ground truth
timestamp ek+1.ts using the Mean Absolute Error (MAE). The total loss is the
sum of both losses, as implemented in Tax et al. [14]. Further, they applied one-
hot encoding for the activities and compute time-related control-flow features,
which we also used in our experiments. We refer to the baseline architecture as
“Tax”. We performed an ablation study and made three modifications to the
baseline DNN architecture:

– We weighted the CE loss function based on the distribution of activity labels
in the training set. Hence, the classification of under-represented event classes
had larger influence during training. We refer to this model as “Tax+CS”.

3 https://github.com/verenich/ProcessSequencePrediction

https://github.com/verenich/ProcessSequencePrediction
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– We replaced all LSTM layers with T-LSTM layers and refer to this model
as “Tax+T-LSTM”.

– We added cost-sensitive learning and replaced all LSTM layers with T-LSTM
layers. We call this model “Tax+CS+T-LSTM”

Input

(T-)LSTM + BN

(T-)LSTM + BN (T-)LSTM + BN

Dense Layer + Softmax Dense Layer

Fig. 2. Network architecture for this work based on the multitask learning approach
proposed by Tax et al. [14]. The dashed components are either LSTM or T-LSTM lay-
ers. The input is of the network is a sequence of vectors representing a prefix 〈e1, . . . , ek〉
as in Tax et al. [14]. For the baseline architecture we applied one-hot encoding and
LSTM layers as in [14]. The outputs of the model are the predicted next activity
(êk+1.a) and timestamp (êk+1.ts). Each of the LSTM layers is followed by a batch
normalization layer (BN) to speed up training, as used in Tax et al. [14].

5 Experiments

5.1 Datasets

We performed our experiments on the same publicly available datasets as Tax et
al. [14] to validate the effectiveness of our proposed techniques. Fig. 3 shows the
distribution of the activities (labels) for the different datasets. It is evident that
the distributions of activities are skewed for both event logs. Table 1 presents
descriptive statistics of the datasets used in this work.

Helpdesk4: This event log originates from a ticket management process of an
Italian software company.

BPI’12 W Subprocess5 (BPI12W): The Business Process Intelligence (BPI)
2012 challenge provided this event log from a German financial institution. The
data come from a loan application process. The ‘W’ indicates state of the work
item for the application.

4 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
5 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
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Fig. 3. Activity distribution in training and test set for Helpdesk and BPI12W datasets.
It is evident that the distributions of the activity labels are skewed.

Fig. 4. Event duration distribution for the complete Helpdesk and BPI12W datasets.
It can be observed that the majority of the events are completed within one day.
However, there are many events with longer duration. Note that we input the elapsed
time between events (∆t) in seconds for T-LSTM.

5.2 Preprocessing

We used the cleaned and prepared datasets as in Tax et al. [14]. The datasets
can be found on the corresponding GitHub repository6. The preprocessing steps
include splitting the data into training and test set, calculating time divisors,
and ASCII encoding activities and sequence generation. Datasets were split into
2/3rd and 1/3rd for training and testing respectively and preserve the temporal
order of cases. We additionally used the last 20% of the training data as a
validation set in order to tune the hyperparameters. We adapted the sequence
and feature generation methods by Tax et al. [14]. The features include the
activity of the event, position of the event in the case, time since the last event,
time from the starting event of the case, time from midnight, and day of the
week. We create one-hot encoded versions of the ground truth labels ek+1.a for
the next activity prediction in order to compare them with the predicted next
activity labels êk+1.a.

6 https://github.com/verenich/ProcessSequencePrediction/tree/master/data

https://github.com/verenich/ProcessSequencePrediction/tree/master/data
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Characteristic Helpdesk BPI12W

Number of instances 3,804 9,658

Case variants 154 2,263

Unique activities 9 6

Events 13,710 72,413

Max case length 14 74

Min case length 1 1

Avg case length 3.604 7.497
Table 1. Descriptive statistics of the datasets used in this study.

5.3 Training Setup

For hyperparameter tuning, we performed a grid search on the training set and
chose the model with the lowest validation loss. The validation loss is the sum
of activity-related validation loss and time-related validation loss. The num-
ber of LSTM or T-LSTM units were set to 64 or 100. For the dropout rate
(for both dense layers), we tried the values 0.0 and 0.2. We choose Nadam
as an optimization algorithm, as used in [14]. Nesterov accelerated gradient
(NAG) calculates the step using the ‘lookahead’ algorithm, which approximates
the next parameters. Adam optimizer estimates learning rates based on ini-
tial moments of the gradients. Nadam is a combination of both and is robust
in noisy datasets. Furthermore, we tested a range of different learning rates
{0.0001, 0.0002, 0.001, 0.002, 0.01} since this is known to have a large impact on
LSTMs [8]. We trained each model for 150 epochs, with a batch size of 64 and
apply early stopping with patience 25 for regularization.

5.4 Evaluation

We applied the same evaluation metrics as in [14]. We used the Accuracy metric
to evaluate the next activity prediction. For the next timestamp prediction, we
used the Mean Absolute Error (MAE) to evaluate our models.

5.5 Implementation

We conducted all experiments on a workstation with 24 CPU cores, 748 GB
RAM and a singe GPU NVIDEA QUADRO RTX6000. We implemented the
experiments in Python 3.7. We used the DL framework TensorFlow 2.17. The
source code is available on GitHub8.

7 https://www.tensorflow.org
8 https://github.com/annguy/time-aware-pbpm

https://www.tensorflow.org
https://github.com/annguy/time-aware-pbpm
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6 Results

6.1 Next Activity Prediction

Table 2 shows the results for the next activity prediction in terms of Accuracy.
For Helpdesk and BPI12W, the approach Tax+CS+T-LSTM achieved the high-
est Accuracy (0.724 and 0.778) among all approaches. The approach’s improve-
ment compared to the baseline is 0.012 and 0.018. While the two approaches,
Tax+CS and Tax+T-LSTM, outperformed the baseline for Helpdesk, these ap-
proaches achieved a lower Accuracy for BPI12W than the baseline.

Approach Helpdesk BPI12W

Tax (baseline) 0.712 0.760

Tax+CS 0.713 0.757

Tax+T-LSTM 0.718 0.693

Tax+CS+T-LSTM 0.724 0.778
Table 2. Results for the next activity prediction in terms of Accuracy. The best result
for each dataset is highlighted (larger is better).

6.2 Next Timestamp Prediction

Table 3 shows the results for the next timestamp prediction task in terms of MAE
in days. All approaches with a T-LSTM cell, clearly outperformed the baseline
for both event logs. Thereby, the approach Tax+CS achieved the lowest MAE of
2.87 days and 0.88 days for Helpdesk and BPI12W respectively. Compared to the
baseline, this approach reduced the MAE by 0.88 days (Helpdesk) and 0.68 days
(BPI12W). The other two approaches, Tax+T-LSTM and Tax+CS+T-LSTM,
achieved a slightly worse MAE values compared to Tax+CS for both event
logs. It is worth noticing that for Helpdesk Tax+CS+T-LSTM and for BPI12W
Tax+T-LSTM yielded the second best results with MAE close to Tax+CS.

Approach Helpdesk BPI12W

Tax (baseline) 3.75 1.56

Tax+CS 2.87 0.88

Tax+T-LSTM 3.01 0.88

Tax+CS+T-LSTM 2.94 0.90
Table 3. Results for next step time prediction in terms of MAE in days. The best
result for each dataset is highlighted (lower is better).
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7 Discussion

In this paper, we argued that the elapsed time between consecutive events carries
valuable information on human behavior in running business processes. There-
fore, we introduced T-LSTM cells for PBPM which inherently model the elapsed
time between consecutive events. Further, we introduced of cost-sensitive learn-
ing to better cope with the problem of imbalanced data.

The obtained results indicate that the elapsed time between consecutive
events is informative and that a DNN architecture relying on T-LSTM cells
cab yield more accurate models for PBPM. Especially, with the approach
Tax+CS+T-LSTM, we could outperform the baseline (Tax) for both datasets
(i.e., Helpdesk and BPI12W) and both prediction tasks (i.e., next activity pre-
diction and next timestamp prediction). Thereby, we could observe that cost-
sensitive learning plays a crucial role for the predictive quality of a DNN archi-
tecture using T-LSTM cells instead of “vanilla” LSTM cells. Interestingly, the
effectiveness of the introduced techniques is more evident for the next timestamp
prediction compared to the next activity prediction

Even though our presented results on DNN architectures using T-LSTMs
seem promising, there are a few limitations to our work. First, we need to verify
our findings by performing experiments on more datasets. Second, a better hy-
perparameter tuning approach like Bayesian optimization [1] could be applied for
all configurations to get a better estimate of their effectiveness. Further, several
runs with random initialization should be performed to estimate the stability of
the models.

8 Conclusion and Future Work

We propose T-LSTM as an alternative to the commonly used “vanilla” LSTM
cell to better exploit information on the elapsed time between consecutive events.
Furthermore, we introduced the concept of cost-sensitive learning to account for
the common class-imbalance in event log data. Our results indicate the effective-
ness of the introduced techniques for the next activity and timestamp prediction.
This suggests that integrating specific mechanisms into neural network layers to
incorporate event log specific characteristics might be an interesting direction for
future research. Here, we mainly demonstrated the benefit of replacing a normal
LSTM with a time-aware LSTM cell for a given baseline approach [14].

An avenue for future research is to investigate if T-LSTM cells might also
improve other LSTM-based PBPM approaches such as Camargo et al. [5] in-
volving resource attributes or Taymouri et al. [15] generating fake event logs.
Another direction for future research is to further customize an LSTM cell in
terms specifically for PBPM. For example, a process-aware LSTM cell could not
only deal with time information but also with resource information.
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Abstract. The present paper explores the opportunity of applying re-
inforcement learning to various typical tasks in the field of predictive
process monitoring. The tasks considered are the prediction of both next
event activity and time completion as well as the prediction of the whole
progression of running cases. Experiments have been conducted on the
popular benchmark dataset, BPI’ 2012, on which we compare the pro-
posed learning system with state of the art methods adopting LSTM net-
works trained through supervised learning. Results enlighten promising
features of the approach and interesting research issues and challenges, as
well as proving the applicability of reinforcement learning to predictive
process monitoring.

Keywords: Predictive Process Monitoring · Reinforcement Learning ·
Outcome and time prediction · Process Mining

1 Introduction

Recently the field of predictive process monitoring is receiving increasing atten-
tion [7,8]. It aims at improving process monitoring through the introduction of
predictive capabilities, allowing both process improvement and proactive prob-
lem handling. Predictive process monitoring relies on models, obtained from
historical process logs, able to forecast the evolution of a process instance based
only on the first part of it. In detail, predictive process monitoring tries to han-
dle several different problems, such as the one step ahead prediction of the next
activity that will be performed and the estimation of its execution time, or the
prediction of all the activities to be performed until the end of the trace, i.e. the
trace suffix, and the total execution time of the trace, i.e. the trace time. Recently,
different machine learning techniques have been adopted to deal with predictive
process monitoring tasks, with a particular focus on Long Short-Term Memory
(LSTM) networks. In this paper we investigate the use of reinforcement learning
to predict, both suffix and one step ahead, activities and execution times. Rein-
forcement Learning (RL) is a particular kind of machine learning paradigm that
trains models to directly maximize a reward signal, without assigning any label
or necessarily trying to find some hidden structure in the data. Reinforcement



learning has been gaining increasing attention since 2015, when [9] trained an
agent that bested many human professional players over various Atari games.
This has led the scientific community to further investigate the techniques, lead-
ing to various interesting results (e.g., [14,13]), up until the latest astonishing
artificial agent [17] that managed to beat professional human player in Star-
craft II, an extremely complex real time strategy game. An interesting feature
of this family of algorithms is that learning is guided by an objective function
that takes into account all the chain of future decisions and its effects, instead
of focusing only on the decision at hand. This could be an interesting feature in
the predictive process mining field, where events to be predicted are conditioned
by the process workflow.

Motivated by past success of RL and this observation, we set as our goal to
study if it is possible to apply reinforcement learning to the field of predictive
process monitoring. At the best of our knowledge this is the first study of this
kind. The only other study that applied reinforcement learning in the process
mining field is [4], where the problem of efficient resource allocation is considered.
Our results enlighten promising features of the approach and interesting research
issues.

The rest of the paper is organized as follows: Section 2 is devoted to introduce
related work. In Section 3 background knowledge about reinforcement learning
is provided, while Section 4 explains our proposed approach. Section 5 presents
the performed experiments and discusses achieved results. Finally, Section 6
concludes the paper and outlines some directions for future works.

2 Related work

Recent efforts in predictive process monitoring exploits Deep Neural Networks,
specifically LSTM and CNN [1,3,6,10,11,16].

In particular, [16] trained an LSTM for the one step ahead event prediction,
in particular the activity associated to the next event and its completion time,
as well as the suffix of the trace, iteratively using the one step ahead event
prediction. They encoded each event into a feature vector that is a combination
of the one-hot encode of the associated activity and three temporal features
related to the event’s timestamp such the time of the day, the time since the
previous event, and the accumulated duration since the start of a process case.
LSTM has also been used in [3] to predict the activity associated with the next
event of a case, but this approach, differently from [16], uses the embedded
dimension of LSTM to both reduce the input’s size and include extra attributes
like the resource associated to each event. Their experiments show that the
proposed approach sometimes outperforms [16] for the prediction of the next
event. However, [3] only focuses on predicting event activity types and cannot
predict the next event’s timestamp as it cannot handle numerical variables.

In [1] a combination of approaches in [3] and [16] is proposed for the one step
ahead event prediction. The approach considers and predicts the next activity,
the timestamp and type of resource of next event. To do so they introduce a



notion of abstract class of resource, i.e. group of resources that usually performs
similar activities, this way they manage to avoid the main limit of [3] which is the
inability of handling numerical variables and therefore predicting next event’s
timestamp.

Another LSTM model has been proposed by Lin et al. [6] for the prediction
of the next activity and all the other categorical attributes of the next event
(e.g the associated resource) of the past events, using an approach similar to
an attention mechanism for weighting the event attributes on the basis of their
relevance in the prediction of future events. Again this approach suffers from the
inability of handling numerical values and therefore predicting timestamps.

Even more recently, the usage of CNN has been investigated. The basic idea
is to convert the temporal data enclosed in an event log into spatial data so as
to treat them as images [10] This idea has been been further extended in [11],
where an RGB encoding of process instances is used to train a 2-D CNN based
on two inception blocks. Both papers only tackle the one step ahead activity
prediction task.

3 Background

In this section we provide general background knowledge on RL.

Reinforcement learning is learning what to do—how to map situations to ac-
tions—so as to maximize a numerical reward signal. The learner is not told which
actions to take, but instead must discover which actions yield the most reward by
trying them. A reinforcement learning problem is formalized using ideas from dy-
namical systems theory, specifically, as the optimal control of incompletely-known
Markov decision process [15].

The learner (agent) interacts with an environment during a sequence of
timesteps composing the learning episode. In the domain of process mining we
can think the learning episode as the evolution of the trace, and the occur-
rence of an event in it as a timestep. At each timestep, an interaction between
agent and environment occurs through observations (x) of the environment, ac-
tions (a) and rewards (r). The observation is the trace event, the action is the
prediction for the next event, and the reward is derived from the comparison
between the next event information and the predicted one. The agent’s goal is
to maximize its cumulative future reward performing its actions, with respect to
the state of the environment. The state si of the environment is defined as the
full sequence of observations and actions performed until timestep i, formally:
si = x1, a1, x2, ..., ai−1, xi. However, it is complex to use a state composed of a
variable number of observations and actions as input. Hence, it is usually pre-
ferred to use a constant fixed number of observations and actions. In this paper
we refer to the number of past timesteps considered to define the state as win-
dow size. Having fixed the window size to a generic k, the state is written as
si = xi−k, ai−k, xi−k+1, ..., ai−1, xi.



The objective function of the agent at timestep i can be expressed as:

Ri =

T∑
t=i

γt−irt, (1)

where γ < 1 is the discount factor of future rewards, used to prioritize more
recent rewards, and T is the number of timesteps in the whole learning episode.
In particular, the methodology adopted in this paper considers Q learning agents.
This type of agents tries to approximate the optimal action-value functionQ∗(s, a),
learning it from the transitions from a state si to a next state si+1 on the basis
of the performed action ai and the received reward ri. The optimal action-value
function may be expressed as:

Q∗(s, a) = max
π

E [Ri|st = s, at = a, π] (2)

which is the maximum expected reward achievable after seeing sequence s and
taking action a, by following any behaviour policy φ for mapping sequences to
actions.

This reinforcement learning algorithm is based on the fact that knowing
Q∗(s, a) an agent can choose the best sequence of actions at any state, maximiz-
ing its reward.

Obviously, perfectly knowing Q∗(s, a) it is not always possible, especially in
complex environment. Still it is possible to discover Q(s, a, θ), through a ma-
chine learning model, where θ are the parameters of the trained model so that
Q(s, a, θ) ≈ Q∗(s, a). In the case of deep Q network (DQN) agents, the model
adopted is a deep neural network, and θ are its weights, used to approximate
the optimal action-value function. In our study we used as underlying model
to approximate the Q-function an LSTM based neural network. The network
weights may be adjusted through training using as loss function, that varies at
each timestep, the mean squared error defined as follows:

Li(θi) = E(s,a,r,s′)

[
(r + γmax

a′
Q(s′, a′, θ−i )−Q(s, a, θi)

]2
(3)

in which γ is a discount factor determining a penalty for more future reward,
θi are the parameters of the Q-network at iteration i and θ−i are the network
parameters used to compute the target at iteration i used in place of the optimal
and unknown maxa′Q

∗(s′, a′).
Therefore, in contrast to supervised learning where targets are fixed before

learning begins, the targets depends on the network weights. Though, since θ−i
is kept fixed at the ith optimization of Li(θi), all the optimization problems at
each iteration are well defined. In our case we used a so called soft update of θ
which updates the parameters at each iteration on the basis of a coefficient β
accordingly to the formula: θi+1 = (1− β)θi + βθ−i , where β ∈ (0, 1).

It is worth noting that this algorithm is model-free as it solves the rein-
forcement learning task directly, without estimating the system transition dy-
namics. Also it is an off-policy algorithm, since it learns a greedy policy where



a = argmaxa′Q(s, a′, θ) but it still ensure, through its behaviour policy, an ad-
equate exploration of the state space through a random action. This allows to
discover if there are better actions to perform with respect to the recommended
one. In our particular case, for training, we used a Boltzmann Q Policy, which
builds a probability law on q values and returns an action selected randomly ac-
cording to this law while, for prediction purposes, a GreedyQPolicy is adopted
which selects the action with the highest reward.

For further details, the full description of the algorithm can be found in [9],
which originally proposed it.

4 Methodology

This section is devoted to describe the proposed methodology, which uses two
agents trained through reinforcement learning to predict activity and execution
time of both the one step ahead event as well as the activities suffix and trace
time. First, we give some preliminary definitions of event, trace, and event log.

Let ε be the event universe, i.e., the set of all possible event identifiers.
An event ei ∈ ε is characterized by a set of properties. In the context of the
present paper, we assume the availability of the following properties: the activity
associated to the event, denoted by ai and the complete timestamp ti. A trace
is a finite non-empty sequence of events σ =< e1, e2, . . . , ek >, ei ∈ ε, ei 6= ej for
i 6= j. We assume the events are ordered with respect to their timestamp, i.e.
ti < tj for i < j. An event log L is a set of traces such that each event appears
at most in one trace.

In the following, we describe the pre-processing performed to make event log
data suitable for being fed to our system, and the details on the architecture
adopted.

4.1 Pre-processing

As it will be clear in the following we use an LSTM as agent’s model. Here we de-
scribe how log data are processed to generate the input sequences to the model.
An event ei in the sequence is logically represented by 4 components, namely the
activity ai, and three temporal features. Each activity is expressed by a binary
vector built using the one-hot encoding of the activity type. One-hot encoding
has been chosen as it is an effective and popular way of representing categori-
cal data. Its main advantage is that one-hot encoding transformation does not
introduce any order or similarity among the representation of categorical data.

Regarding the three added temporal features, the first is the time passed
between Sunday midnight and the event ei (twi in eq. 4) which is useful to
express the seasonality of the process. The second is the time passed between the
completion of an event ei and the completion of the previous event ei−1 (tei in eq.
5), thus substantially corresponding to the event duration (plus possible idle time
between the two events). The last temporal feature is the time passed between
the start of the trace and the event ei (tti in eq. 6), which gives information



about the progression of the trace. This last one is particularly relevant since
there may be a strong correlation between the performed actions and the ”age”
of the process case.
Formally:

twi
=
t
i
− tw0

∆tw
(4){

tei = 0 if i = 1,

tei =
ti−ti-1
∆maxe

otherwise
(5)

tti =
t
i
− t

0

∆maxt

(6)

where t
i

is the timestamp of the event at index i, tw0
is the timestamp of

the last passed Sunday midnight, and t
0

is the start timestamp of the process.
∆tw ∆maxe

and ∆maxt
are normalization factors to make features varying in the

range [0, 1], as it improves the performance of the network. ∆tw is the amount
of time in a week, while ∆maxe and ∆maxt are, respectively, the maximum event
duration and the maximum trace duration. It is also worth noting that given tei
and both twi-1

and tti-1 , it is possible to derive the value of both twi
and tti .

4.2 Learning Architecture

The overall architecture is shown in figure 1. In the Figure, dashed lines enlighten
the learning phase, while solid lines refer to the prediction phase. In the system,
we have two different agents. Both take as input a sequence of events, in which
every event is defined by the three temporal features and the one-hot encoding of
the activity as explained before. One agent predicts the one step ahead activity,
the next one that will be performed, while the other is devoted to predict its
completion time. As said, every DQN agent has an underlying neural network
that models the reward function. For each of our two agents, we used an LSTM
based neural network to learn and approximate the optimal Q∗(s, a), instead of
training them using ground-truth labels, typical of supervised learning. This is
done, through the agents’ interaction with their respective environment, thanks
to which they receive their reward. The LSTM architecture have been chosen
because of its widespread adoption in predictive process mining. We hasten to
note that DQN agents only work with a discrete action space and therefore they
are unable to produce continuous outputs. To address this issue we divided the
output time in bins, each representing the range in which the estimated time
falls, and we designed the time agent so as to produce bin indexes as outputs.

As explained in section 3, the learning process of our RL agents is based on
the notion of transition from a state of the environment to another on the basis
of the performed action and its associated reward at each timestep.

We set the reward functions in each environment as binary reward functions:
in the time environment, the reward gives a plus one when the predicted bin
included the true time, and zero otherwise; similarly in the activity environment
the reward gives a plus one when the prediction is correct and a zero otherwise.



For the one step ahead prediction of the next activity and time the two
agents work in isolation exploiting their underlying LSTM network model to
perform their prediction. For suffix prediction the situation is more complex, as
each agent has access only to the information of the first part of the trace. In
particular, it reads only the first k events where k is the window size. Hence, each
agent needs to rely both on its own prediction and on the other agent’s prediction
to have all the required inputs for predicting more than one step ahead, as the
true information is not available. In a way, the two agents cooperates exchanging
messages to inform the other of their prediction, at each timestep. This way the
whole sequence may be predicted using the predicted information when the true
one is not available. All this is iterated until the end of the trace is predicted.

Formally, at the first iteration we consider the sequence σk =< e1, e2, . . . , ek >
of events of length k (window size), where ej be the j-th event of a trace, which
is characterized by the tuple < aj , twj , tej , ttj >. The time predictor agent αt
and the action predictor agent αa are defined as follows:

αt : σk 7→ t′ek+1
,

αa : σk 7→ a′k+1,

where apex denotes the predicted value. Each agent will inform the other of its
prediction and therefore the predicted next event e′k+1 will be characterized by
the tuple < a′k+1, t

′
wk+1

, t′ek+1
, t′tk+1

>, where t′wk+1
and t′tk+1

are derived from
t′ek+1

, ttk and twk
. Then a new prediction will be performed by each agent using

as input σk+1 =< e2, . . . , ek, e
′
k+1 >. Iterating at the i-th step, the sequence σi

will be formed by k−i real events and i predicted ones. The algorithm is iterated
until the end event of the process is predicted.

Fig. 1. Overall architecture.



5 Evaluation

In this section we empirically evaluate the performance of the proposed approach.
Results are compared with those of other approaches using LSTM networks for
uniformity reasons, so to remark the contribution of RL paradigm.

The following subsections describe the experimental setup, reference metrics
and results.

5.1 Experimental setup

Dataset The experimental dataset is a subset of an event log from the Busi-
ness Process Intelligence Challenge (BPI’12) [2] which contains data from the
application procedure for financial products at a large financial institution. This
process consists of three subprocesses: one that tracks the state of the applica-
tion, one that tracks the states of work items associated with the application,
and a third one that tracks the state of the offer. Since our goal is to predict the
coming events and their timestamps, events that are performed automatically
aren’t considered relevant. Therefore, we limit our evaluation to the work items
subprocess (BPI’2012 W): the one containing events that are manually executed.
As done in [16], to perform our experiments we used chronologically ordered first
2/3 of the traces as training data, and evaluate the activity and time predictions
on the remaining 1/3 of the traces.

The dataset has been pre-processed as explained in section 4. For what con-
cerns the setting of bins defining the output values of the time agent, we analyzed
the whole distribution of events duration in the dataset. This allowed to set the
various ranges so as to both balance the number of elements in a bin and to
maintain a reasonable similarity between elements in the same bin.

The resulting bin endpoints are [0, 1, 10, 60, 120, 240, 480, 1440, 2880, 4320,
7200, 10080, 14400, 20160, 30240, 40320, 50400] expressed in minutes. Also note
that the chosen endpoints correspond to meaningful time frames such as hours,
days or weeks. Figure 2 shows the distribution of events duration in the dataset.
The x-axis is in logarithmic scale for visualization purposes.

Fig. 2. te distribution in bins



Agents We performed the experiments using Keras-rl [12], running on a ma-
chine with two NVIDIA GeForce GTX 1080, a i7 8700K CPU @3.70 GHz and
32GB RAM. Each agent was trained for 600000 steps and is characterized by the
use of a sequential memory of dimension 500000, a BoltzmannQPolicy clipped in
range (-15,15) as behaviour train policy, and a GreedyQPolicy as test policy; the
target function was updated through soft update using β = 10−2 as coefficient.
The underlying neural network has two hidden LSTM layers with 200 neurons
each and ReLU activation; during training we used an Adam optimizer with a
learning rate of 10−3. This configuration was kept for all the tested window size,
as it had the best performance for approximating the Q function, between those
tested.

5.2 Metrics

In order to properly compare our results with previous work, we adopted the
same evaluation metrics.

One-step ahead prediction We evaluate our results in terms of accuracy, for
the next activity prediction, and in terms of mean absolute error (MAE) in days,
for the predicted time. For the purpose of comparison with the baselines we use
the MAE but it is important to remember that our time agent predicts ranges
of time. Therefore, since we need a continuous value for the time in order to
compute the MAE, we choose for this the inferior endpoint of the bin predicted
as value. For example, if the predicted bin is the third one, which corresponds
to range [10, 60), the time used for computing the MAE will be 10 minutes.

Suffix prediction For the suffix completion time prediction we consider the
absolute trace duration error (TDE)

TDE = |t′tf − ttf | (7)

where, with some abuse of notation, f refers to the final event in the true and es-
timate trace, hence ttf (t′tf ) represents the total duration of the true (estimated)
trace. The TDE is then averaged over all traces.

For evaluating the accuracy of the activity suffix prediction the most well
known and used distance is the Damerau-Levenshtein distance, which is defined
as the minimum number of deletion, insertion, substitution and transposition
operations needed to transform the first string to the second. In particular,
this distance can be normalized dividing its value for the length of the longer
string. What we adopted for comparison purposes is the Damerau-Levenshtein
similarity expressed as one minus the normalized Damerau-Levenshtein distance.

5.3 Results

In Table 1 we present the performances achieved for the one step ahead pre-
diction tasks. For next completion time prediction (Table 1.(a)) we compare



our results with the best reported by Tax et al. [16] for different window sizes.
Table 1.(b) reports the accuracy of the next activity prediction of our method,
and the ones reported by Tax et al. [16] and Camargo et al. [1]. In [1] the next
completion time task is not addressed. In Table 1.(a) the row ”All” reports the
average performance over all the tested window sizes. In [16] these correspond
to all the values in the range [2,20], whereas in our case we considered the set
{2,3,4,5,6,7,10,20}.

It can be seen that our performance in the next completion time prediction
are clearly better than the baseline, whilst our accuracy is worse. In particular,
the relative improvement in the case of completion time prediction is about 27%,
and the relative accuracy degradation is only about 8% with respect to best result
provided by [1]. These results may be justified as follows. DQN agents optimize
a cumulative reward function that takes into account rewards on future actions,
in a sense trying to simulate the future. Completion times show a form of de-
pendency on the total trace duration. For instance, overestimating the duration
of early events will lead to an excessively long overall trace duration estimate.
This may guide the learner through states with a better generalization ability.
On the contrary, a similar relation does not exist for activities in the considered
setting, where only the structural perspective of the process (i.e the workflow) is
taken into account. Thus enriching the log with other perspectives and in par-
ticular with data regarding case-specific and event-specific properties may likely
highlight dependencies among activities and thus lead to improved results. We
plan to verify such hypothesis in future work.

Table 1. Comparison of performances for the one step ahead prediction tasks. (a) Next
completion time. (b) Next activity.

MAE (days)
Window size Ours Tax et al.

2 1.34 1.69
10 1.05 1.45
20 0.62 0.98
All 1.17 1.59

Accuracy
Ours Tax et al. Camargo et al.

71.3% 76% 77.8%

(a) (b)

We also show in Table 2 the performance achieved in suffix prediction tasks.
The results confirm a better behavior of the proposed RL architecture on the
completion time prediction than on the activity prediction task. For the former,
the relative improvement is about 21%, which is in line with the one step ahead
performance. For the latter, we observe a much worse performance degradation
of about the 66% with respect to [1], and about 50% with respect to [16]. This
is in part due to an expected error propagation effect, since errors committed
at the early suffix prediction stages progressively compromise all the subsequent
ones. As another issue reducing our systems performance, we observed that the



event agent struggle to predict the end of the trace, leading to excessively long
traces. To verify this, we calculated the DL-similarity truncating the predicted
traces to the length of the true traces, discovering that performances improves
up to a DL-similarity of 0.2974, which is comparable with the accuracy obtained
by [16]. For what concerns computational complexity, clearly the time required
to train an RL agent is much higher than the LSTM alone. We experimented
an increase factor of about 20x of the required training time. This is a well
known characteristics of RL training although alternative techniques with better
computational performance have been proposed [5]. We plan to investigate them
in future work.

Table 2. Comparison of performances for the suffix prediction tasks. (a) Completion
time. (b) Next activities.

mean TDE (days)
Window size Ours Tax et al. Camargo et al.

2 12.66 ≈ 14 ≈ 11
10 6.17 ≈ 9 ≈ 9
20 4.63 ≈ 6 ≈ 9

DL-similarity
Ours Tax et al. Camargo et al.

0.174 0.3533 0.525

(a) (b)

6 Conclusions and Future Works

The main contribution of this paper is to provide a preliminary study of the ap-
plicability of reinforcement learning techniques to predictive process monitoring
tasks. In particular we used Deep Q Networks agents to address both the one step
ahead activity and completion time prediction, and the trace suffix outcome pre-
diction. Through our experiments on the BPI’2012 popular benchmark dataset,
we showed that DQN agents can fully exploit time information, achieving re-
sults that significantly outperforms state of the art approaches based on LSTM
architectures, while the plain workflow information seems to be insufficient to
train an RL agent for the activity prediction task. The present paper also high-
lights several interesting research directions. First of all, as already noticed the
proposed approach may be further refined through the use of case-specific data,
and event-specific data. Second, more complex reward functions may be used in
order to weight the activity and/or case importance, for instance something like
the amount of money involved in a loan procedure or the cost to perform a spe-
cific activity. Third, alternative RL techniques can be considered, to investigate
both their efficiency and accuracy performances.
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1 Université Paris-Saclay, ENS Paris-Saclay, CNRS, LSV, Gif-sur-Yvette, (France)
mathilde.boltenhagen@lsv.fr

2 University of Bergen, Department of Informatics, Bergen, Hordaland, (Norway)
benjamin.chetioui@uib.no
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Abstract. Conformance checking is an important aspect of process min-
ing that identifies the differences between the behaviors recorded in a log
and those exhibited by an associated process model. Machine learning
and deep learning methods perform extremely well in sequence analysis.
We successfully apply both a Recurrent Neural Network and a Random
Forest classifiers to the problem of evaluating whether the alignment cost
of a log trace to a process model is below an arbitrary threshold, and
provide a lower bound for the fitness of the process model based on the
classification.

1 Introduction

With the cost of computer memory becoming negligible, organizations have be-
come able to store extremely complex event logs from their systems. Process
Mining (PM) is a field of study that attempts to make sense of these logs by
producing corresponding process models. As decision makers increasingly rely on
such models, it is crucial to ensure that they model the targeted systems reliably.
Conformance checking is an entire subfield of PM that aims at defining the key
criteria of a good process model [1]. As of today, the four main criteria that are
considered are fitness, precision, generalization, and simplicity. Because of the
complexity of the involved data and of the resulting process models, the fitness
criterion is the only one unanimously accepted in the community. Computing
the fitness requires alignments of the event logs with the process model, which
often is costly [2,3] and for which a trade-off is possible between higher result
quality and lower computational complexity. The need for such a compromise
begs the question: is it possible to extract high-quality conformance checking
information through a less complex process?

To motivate such research, the 2016 Process Discovery Contest invited sci-
entists to study model compliance from a classification-oriented perspective [4].
The event logs were classified in two classes — compliant and deviant — using
pure data mining techniques. By encoding event logs into sequences of activities
called log traces, it is possible to perform such a classification using Recurrent



Neural Networks (RNNs). RNNs are at the core of significant progress in other
fields of Computer Science such as Natural Language Processing, or Bioinformat-
ics [5]. The PM community has recently shown significant interest in RNNs, but
principally on the topic of Predictive Business Process Monitoring [6,7,8,9,10,11].

In this paper, we focus on the efficiency of Deep Learning (DL) and classical
Machine Learning (ML) methods in conformance checking scenarios. Our core
contribution is an application of a RNN and a Random Forest (RF) classifier to
the problem of classifying traces based on their alignment costs to a reference
process model. We provide some theoretical properties of the fitness along with
reproducible experiments.

2 Related Work

The classification of log traces has been studied in the context of system devia-
tion analysis. Such works generally consider two classes of processes (normal and
deviant) and aim at explaining why discrepancies occur and deviant processes
arise. Nguyen et al. defined trace classes from data attributes and investigated
the problem of classification using decision trees, the k-Nearest Neighbors algo-
rithm and neural networks [12]; Sun et al. and Bose et al. investigated labeled
traces and association rules mining methods that can be used to extract human
readable results from them [13,14]. Similarly, Bellodi et al. provided a method
to classify log traces using Markov Logic formulas [15]. One glaring difference
between these works and ours is that we have an oracle at our disposal to classify
our traces, i.e. a process model.

The application of Long Short-Term Memory (LSTM) networks to the prob-
lem of predicting the next event in a business process was previously investigated
in several works [6,7,8,9]. In lieu of RNNs, Pasquadibisceglie et al. investigated
Convolutional Neural Networks for the same purpose [10]. Building on top of
all these approaches, Taymouri et al. tackled the problem by implementing a
Generative Adversarial Network, with promising results [11].

The present paper is probably most similar to the work of Nolle et al. [16],
whose results, which are based on RNN-based alignments, are extremely promis-
ing, though they perform anomaly detection instead of log trace classification.

3 Preliminaries

In this section, we provide some background and notation for both PM and ML.

3.1 Log Traces, Process Model, Fitness and Alignments

We represent event data as log traces.

Definition 1 (Log traces). Let A be a set of activities. We define a log L as
a finite multiset of sequences σ ∈ A∗, which we refer to as log traces.



〈open, read, wait, wait, close〉
〈open, read, close〉
〈write, wait, close〉
〈open,wait, write, close〉

open

read

write

close

wait

Fig. 1: A log L and an associated process model M

Process models can be generated from an event log; these models extrapolate a
set of possible runs from the recorded log traces exhibited in the aforementioned
event log. An example of a log and associated process model is provided in
Figure 1.

Definition 2 (Runs of a process model). Let M be a process model defined
over a set of activities A. We write Runs(M) ⊆ A∗ the set of sequences generated
by M .

This paper does not discuss the structure of process models; for a given model
M , we consider the set Runs(M) to be a sufficient description of M . How well
M models a log is measured by the fitness criterion and can be computed based
on Runs(M) as the minimal cost of aligning each log trace to a run of M .

Definition 3 (Alignment Cost, Optimal Alignment). Given a log trace
σ = 〈σ1, . . . , σm〉 ∈ L, and a process model M , we define the alignments of σ
with M as sequences of pairs ( moves) 〈(σ′1, u′1), . . . , (σ′p, u

′
p)〉 with p ≤ m + n

such that, for a given index i and a given run u = 〈u1, . . . , un〉 ∈ Runs(M):

– each move (σ′i, u
′
i) is either: a synchronous move (σj , uk) with σj = uk, a

log move (σj ,�), which represents the deletion of σj in σ, or a model move
(�, uk), which represents the insertion of uk in σ, where j ∈ {1, . . . ,m} and
k ∈ {1, . . . , n};

– the left projection 〈σ′1, . . . , σ′p〉 of the alignment to A∗ (which drops the oc-
currences of �), yields σ;

– the right projection 〈u′1, . . . , u′p〉 of the alignment to A∗(which drops the oc-
currences of �), yields u.

We call alignment cost the count of non-synchronous moves in the alignment. An
optimal alignment is an alignment in which the alignment cost is the minimum
possible given σ and M .

The table below describes an optimal alignment of the log trace
〈open,wait, write, close〉 with the process model drawn in Figure 1. Since the
alignment contains one non-synchronous move, its cost is 1.

trace open wait write close
run open � write close



We compute the fitness of a process model with regards to a trace as follows:

fitness(σ,M) = 1−
minCost(σ, select(σ,M))

|σ|+ min
u′∈Runs(M)

|u′|
(1)

where select(σ,M) returns a run u ∈ Runs(M) such that the set of alignments
of σ with M using u contains an optimal alignment, and minCost(σ, u) returns
the minimum cost of aligning σ with M using a run u.

A trace is said to be fitting when its fitness is 1, i.e. when its optimal align-
ment has a cost of 0. We define the fitness of a process model M with regards to
a log L to be the average of the fitness of M with regards to each log trace of L.

3.2 Supervised Learning from Sequences

There are several approaches towards training classification models from se-
quential data in a supervised way. They have in common that they must encode
sequences of variable lengths as fixed-size vectors; these vectors are subsequently
used as training examples for the classifier, which learns a classification model
from them. The quality of the model is then assessed using several metrics and
methods, based on its ability to accurately classify new inputs.

Building a Model One can construct the vectors referenced above in different
ways, e.g. by ignoring the order of the sequences (Bag-of-words) in the hope that
knowledge about the frequency of each word in the sequences is sufficient to train
a classifier (e.g. a RF classifier), or by training Deep Neural Networks able to
encode the ordering of the sequences in the vectors (e.g. a LSTM network).

Long Short-Term Memory networks are RNNs able to learn and remember
over long sequences of inputs [5]. They achieve that by integrating neurons
specifically designed to determine whether a piece of information should be
remembered or forgotten, depending on whether it is relevant for classification.
Figure 2 gives the structure and relevant equations of an LSTM cell.

When one uses LSTM networks for sequence classification, the sequences
(represented as sequences of integers) are usually first passed through an em-
bedding layer before being passed through the LSTM layer; the prediction is
then the output of a dense layer. One may add dropout layers to the network, in
order to randomly ignore a percentage of units during training to avoid overfit-
ting. The specificity of this architecture is that the whole sequence is fed as input
to the network and that the embedding is learned through the training process;
this permits learning a representation of the sequence that somehow embeds its
sequential properties.

Definition 4 (Bag-of-words (BoW) encoding). For an alphabet A and a
sequence σ ∈ A∗, a Bag-of-words encoding canonically maps σ to a multiset of
words of A.



ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, xt] + bc)

ot = σ(Wo · [ht−1, xt] + bo)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

where bg is the bias added at gate g,Wg is the weight vector for gate g, xt is the current input,

Ct−1 the memory of last hidden unit, and ht−1 the output of last hidden unit.

Fig. 2: LSTM cell (adapted from [17])

In its simplest version, the multiset is encoded as a vector of integers Xσ,
and the element at index i in Xσ gives the count of the word at index i in OA
in the sequence σ, where OA is a vector containing exactly all the elements of A
in some arbitrary order. For instance, the respective BoW encodings of the log
traces in Figure 1 are 〈1, 1, 2, 1, 0〉, 〈1, 1, 0, 1, 0〉, 〈0, 0, 1, 1, 1〉, and 〈1, 0, 1, 1, 1〉 for
OA = 〈open, read,wait, close, write〉.

Random Forests (RFs) are an ensemble learning method for classification. A
RF constructs a bootstrapped collection of decision trees, i.e. a collection of
decision trees that are sampled with replacement. Each decision tree consists of
inner dichotomous nodes representing tests on random subsets of features, and
of leaf nodes representing the possible output classes. The class of a given input
can be predicted by taking the majority vote of the classification trees [18].
These decision trees can help to understand which features are important for
classification, since every output can be represented as a list of decisions taken
at the dichotomous nodes.

Validating a Model We recall some metrics used to evaluate classification
models, as well as one famous validation technique, namely the K-fold cross-
validation.

Definition 5. In the following, given a classification model C and a given input
i, we write yC,i the actual class of the input and ŷC,i its predicted class by C.

Definition 6 (Accuracy). For a given classification model C and an input i,
we say that the classification is accurate when yC,i = ŷC,i. For a set of inputs
S, we define ES,C = {i : i ∈ S, ŷC,i = yC,i}. The accuracy accC(S) of the

classification of S by C is given as accC(S) =
|ES,C |
|S| .

Definition 7 (Cross-Entropy Loss). For a given binary classification model
C and a given set of inputs S, there exists an error function called cross-entropy
loss lossC(S) defined by lossC(S) = 1

|S|
∑
i∈S − log(P (ŷCi = yCi)).



K-fold cross-validation K-fold cross-validation is a model validation technique
used to lower the biases that may emerge when one only selects one training
set and one testing set. Given K ∈ N∗, the dataset D is split into K i-indexed
subsets Di. For each subset, one trains a model using D \Di as the training set,
and subsequently evaluates it using Di as the testing set. The performance of
the model is then summarized using the mean and variance of the evaluation
scores.

4 Classifying Traces and Bounding the Fitness of a Model

The fitness of a log trace to a process model represents important information
in conformance checking. Computing the fitness requires computing alignments
of the trace with the model, which is a costly process. In this section, we present
a binary classification of log traces based on their closeness to a process model:
the Alignment Cost Threshold-based Classification (ACTC). This classification
provides means of extracting relevant information at a much lower cost than
alignments, while still guaranteeing a lower bound for the fitness of a process
model to a log.

Definition 8 (Alignment Cost Threshold-based Classification). Let M
be a process model and L be a log. For a given alignment cost threshold tAC ∈ N,
the ACTC maps each log trace σ ∈ L to one of two classes depending on its
minimal alignment cost cσ,M :

– the positive class Lpos if cσ,M ≤ tAC;
– the negative class Lneg otherwise.

The tAC parameter allows us to have more flexibility — in that we can now
work with arbitrarily close traces instead of only fitting ones — and to control
the balance of our two classes.

Theorem 1. Given the ACTC of a log L for a model M and a cost threshold
tAC, the following holds:

fitness(L,M) ≥

∑
σ∈Lpos

1− tAC
|σ|+ min

u∈Runs(M)
|u|

|L|
(2)

i.e. fitness(L,M) is bounded from below.

Proof. The fitness of a process model M with regards to a log L is defined as
the average of the fitness of M with regards to each log trace of L, i.e.

fitness(L,M) = 1−

∑
σ∈L

minCost(σ, select(σ,M))

|σ|+ min
u′∈Runs(M)

|u′|

|L|
. (3)



Let there be an ACTC of cost threshold tAC . For every σ ∈ L, we have

fitness(σ,M) ≥


0 if σ ∈ Lneg

1− tAC

|σ|+ min
u′∈Runs(M)

|u′| if σ ∈ Lpos , (4)

since tAC is the highest allowed alignment cost for a trace to be classified into
Lpos. It follows trivially that:

fitness(L,M) ≥

∑
σ∈Lpos

1− tAC
|σ|+ min

u∈Runs(M)
|u|

|L|
. (5)

In the following, we write B = fitness(σ,M) for any σ ∈ Lpos. ut

Taking a small value for tAC results in a large B, but a potentially smaller
cardinality for Lpos; on the other hand, a large tAC will induce a larger cardi-
nality for Lpos but a smaller B. The aim of the following is to compute B from
predictions, i.e. in a case where Lpos is built using a predictive approach. In this
case, there is a risk that traces will be classified erroneously. We show in the next
sections that classification models are good enough in practice to guarantee a
lower bound of their fitness that is very close to the one outlined above.

5 Experiments

In this section, we present our datasets; we follow by describing how we param-
eterize our classification models; finally, we present our experimental results.

5.1 Alignment Datasets

The ACTC requires a training set of alignments; for that purpose, we have
created alignments datasets that contain the trace variants of each dataset (i.e.
the unique sequences in the log) and their minimal alignment costs for several
process models4; that way, we rid our results of the noise induced by duplicate
traces.

We ran our experiments on the three largest logs from the Business Process
Intelligence Challenges available at the time of writing, using models from the
work of Augusto et al. [19]. The models were discovered using the preprocessing
method of Conforti et al. [20], and then either the Inductive Miner (IM) [21], the
Split Miner (SM) [22], or the Heuristic Miner (SHM) [23]. Table 1 summarizes
the relevant pieces of information pertaining to the datasets.

4 https://github.com/BoltMaud/An-Alignment-Cost-Based-Classification-of-Log-
Traces-Using-ML



Log Number of
Trace Variants

Method of Model
discovery

Average
Alignment Cost

Median
Alignment Cost

Dataset
Name

BPIC 2012 4 366
Noise Filter + IM 2.14 2.00 Aim

2012

Noise Filter + SM 3.02 3.00 Asm
2012

Noise Filter + SHM 7.60 6.00 Ashm
2012

BPIC 2017 15 930
Noise Filter + IM 14.90 13.00 Aim

2017

Noise Filter + SM 15.03 13.00 Asm
2017

Noise Filter + SHM 16.31 14.00 Ashm
2017

BPIC 2019 11 973 Noise Filter + IM 24.38 6.00 Aim
2019

Table 1: Event log description and alignment costs

For each log, we also generate a set of 1000 random mock traces of lengths
varying between 1 and the length of the longest trace in the log. These traces
have, in most cases, a very high alignment cost with regards to the process
models.

5.2 Learning Methods

We train two classifiers, namely a RF on BoW-encoded sequences, and a LSTM
network on sequences whose encoding embeds the sequential properties of the
activities. The general overview of the training process is shown in Fig. 3.

Fig. 3: Overview of the experimental setup

LSTM Network This model takes constant-length vectors of integers as inputs,
in which a given integer corresponds to exactly one activity. Traces that are
shorter than the expected length of the vectors are padded as needed.

The architecture of the model we train is given in Figure 3. The input layer
takes a vector of size m (corresponding to the length of the longest trace in the
log) containing elements belonging to the set of all the actions taken in the log
traces. The vector is encoded into a vector of 15 elements using an embedding
layer. The resulting vector is then fed to a bi-LSTM layer — ensuring that the
left and right contexts of the actions in the input traces are remembered — and
then to another simpler LSTM layer. Dropout layers with a frequency rate of



0.5 are added to prevent overfitting. The dense layer uses the softmax activation
function to output the predicted classes, thus ensuring that they are mutually
exclusive. We train the model for 10 epochs and with a batch size of 50 in-
stances 5.

RF Classifier The RF classifier does not take into account the order of the
events, as it takes as input vectors that represent an ensemble of features, in our
case activities. The classifier is thus trained with vectors resulting from a BoW
encoding of the traces.

The target values, i.e. the prediction classes, are 0 (negative) or 1 (positive)
depending on the minimal alignment cost of the sequence.

We set up 3 verification steps: first, we split the dataset into a training set
(67%) and a testing set (33%) using a 10-fold cross-validation on the training
sets to find the best predictive model in terms of accuracy. Second, we predict
the classes of the sequences in the testing sets, and compare the accuracy during
training to the accuracy during testing; they should be similar. Finally, we feed
randomly generated traces with a high alignment cost to the predictive model;
they should always be classified negatively.

5.3 Results and Interpretation

We built two distinct classifiers — one RNN and one RF — for each pair (d,m),
with d one of the 7 datasets in Table 1, and m one of the possible alignment
costs for the model; each pair represents an ACTC problem.

Table 2 summarizes the results of the experiments, where tAC is the median
of the alignment costs given in Table 1. The table contains the accuracies and
losses for our testing data, and we compare our running times with the ones of
ProM6 for computing the alignments.

Both learning models exhibit good accuracy and low losses, thus confirm-
ing the potential of predictive approaches for the problem of alignment. The
predicted lower bound of the fitness is computed from the traces classified as
positive and is very close to the exact fitness lower bound. However, we note a
significant difference between the actual fitness and these lower bounds. This is
because the fitness function we use is coarse-grained, in that it gives a purely
binary score denoting whether a log trace is classified as negative or positive.
Despite this weakness, it remains somewhat useful as a heuristic to decide which
of two models better fits a trace. It is also worth noting that our binary clas-
sification is straightforward to understand, whereas understanding alignments
tends to require more expertise; such a classification is therefore likely to be
very valuable to decision makers.

5 The size of the embedding layer, the number of epochs, the batch size, and the
stack of LSTM layers were chosen after several initial experiments, as they were the
parameters that yielded the best results.

6 https://www.promtools.org



Align-
Fitness tAC

% of Fitness RNN Random Forest ProM
ments positive Lower

Bound
Acc Loss Predicted

Fitness
Lower
Bound

Avg.
Run-
time
(ms)

Acc Loss Predicted
Fitness
Lower
Bound

Avg.
Run-
time
(ms)

Avg.
Run-
time
(ms)

Aim
2012 0.950 2 73 0.695 0.999 0.011 0.695 12.00 0.988 0.057 0.700 0.06 42.28

Asm
2012 0.932 3 73 0.670 0.829 0.377 0.745 19.72 0.820 0.472 0.713 0.08 52.85

Ashm
2012 0.837 6 56 0.476 0.969 0.104 0.491 23.75 0.972 0.136 0.479 0.06 99.89

Aim
2017 0.874 13 53 0.463 0.984 0.047 0.473 10.01 0.979 0.056 0.467 0.03 5.12

Asm
2017 0.819 13 52 0.415 0.985 0.049 0.420 2.70 0.985 0.053 0.421 0.03 7.72

Ashm
2017 0.794 14 52 0.400 0.981 0.055 0.410 4.05 0.984 0.055 0.405 0.03 33.23

Aim
2019 0.561 6 53 0.328 0.973 0.078 0.338 15.11 0.958 0.103 0.344 0.03 1.09

Table 2: Alignment Cost Threshold-based Classification by using a RNN and a
Random Forest Classifier, with tAC the median of the alignment costs.

Once the model has been trained, predicting the class of a trace is, in most
cases, significantly faster than computing its exact alignment, as summarized
in Table 2. One glaring exception is in the case of Aim

2019, in which computing
exact alignments remains roughly 14 times more efficient than performing a
prediction using the RNN. This is because the model is very simple (made of
only 13 transitions, without loops); this is not surprising and should not matter
in practice, as predictive approaches are tools designed to outperform exact
approaches in complex cases with big or even intractable search spaces. One
noteworthy caveat of using predictive approaches, however, is the fact that the
models must be trained before they become able to output predictions. In our
experiments, training a model took from 3.18s to 8.97s for our RF classifier, and
from 2675.87s to 34837.31s for our LSTM network —both of which involved a
10-fold cross validation.

To better assess the impact of tAC on our results, we perform a comparison of
the predictions with varying tAC values in Table 3. We summarize the accuracy,
loss, and distribution into the two output classes for the testing data, as well
as for randomly generated mock data. We notice that the accuracy drops very
fast as tAC grows larger for the mock data; this is induced by an equally quick
drop in the percentage of log traces classified as negative. Given actual log traces
however, both classifiers are reasonably accurate in each one of the considered
cases. As was the case in Table 2, we note that the predicted lower bound of the
fitness is close to the one given by our exact formula. This is also a nice result,
although the actual fitness of the process model with regards to the log is pretty
far off at 0.837.

6 Conclusion and Opening

We presented a compelling use of ML for conformance checking by constructing
binary oracles — using a RF classifier and a LSTM network — that are able to
predict with high accuracy whether the minimal alignment cost of a log trace
with regards to a process model is below an arbitrary threshold. The method



tAC Class %
Fitness RNN Random Forest

Lower Bound Acc Loss Predicted Fitness
Lower Bound

Acc Loss Predicted Fitness
Lower Bound

2

all 100
0.071

0.992 0.029
0.076

0.998 0.009
0.073pos 8 0.982 0.214 1.000 0.043

neg 92 0.992 0.013 0.998 0.006
mock 100 / 0.961 0.108 / 0.904 0.207 /

4
all 100

0.169
0.991 0.042

0.166
0.999 0.016

0.170pos 20 0.968 0.151 1.000 0.021
neg 80 0.997 0.016 0.998 0.015

mock 100 / 0.937 0.303 / 0.876 0.317 /

6
all 100

0.476
0.971 0.104

0.491
0.972 0.150

0.479pos 56 0.990 0.066 0.978 0.063
neg 44 0.944 0.156 0.962 0.268

mock 100 / 0.871 0.543 / 0.837 0.548 /

8
all 100

0.500
0.976 0.092

0.498
0.984 0.077

0.501pos 65 0.980 0.079 0.989 0.031
neg 35 0.970 0.116 0.974 0.161

mock 100 / 0.818 1.189 / 0.782 0.911 /

10
all 100

0.524
0.937 0.165

0.508
0.971 0.103

0.522pos 73 0.943 0.100 0.979 0.055
neg 27 0.921 0.336 0.949 0.233

mock 100 / 0.364 3.759 / 0.620 1.650 /

Table 3: Comparison of the prediction results for different tAC values for the
testing set of Ashm

2012. The exact fitness for the used sublog is 0.837.

we proposed is more flexible, cheaper, and easier to understand for humans
than the one usually used for exact alignments. We furthermore proved the
existence of a lower bound for the fitness of a process model. Our work shows
that there is a lot of value to be gained in exploring the use of ML methods
in conformance checking. Future investigations may include whether the exact
minimal alignment cost of a trace with a process model can be predicted from
a regression model; another interesting project could build on the work of Nolle
et al. [16] to predict optimal alignments of a log trace to a process model.
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Abstract. The automatic extraction of formal process information from
textual descriptions of processes is a challenging problem, but worth ex-
ploring, since it enables organizations to align complementary informa-
tion that talks about processes. In this paper we continue our previous
work on this area, based on defining hierarchical/tree patterns on the
dependency trees that arise from the linguistic analysis. We now incor-
porate a new abstraction layer on these patterns, that consider relation-
ships between nearby sentences. The aim of this extension is to capture
inter-sentence relationships that typically arise in textual descriptions of
processes. The experiments done on publicly available benchmarks cor-
roborate this intuition, showing a significant rise in the ability to capture
all the important control-flow relationships defined in the text.

1 Introduction

As it has been recently acknowledged, there are quite important challenges on
applying Natural Language Processing (NLP) techniques in the field of Business
Process Management (BPM) [12]. Among the important ones, the extraction of
process models from textual process descriptions is a very attractive use case,
since the creation of process models consumes up to 60% of the time spent on
process management projects. This paper focuses on this challenging task.

Although different approaches have been considered in the last years (see
section 2), a number of open challenges remain for reaching a maturity level
enabling its widespread adoption. For instance, techniques must be able to iden-
tify sentences that provide contextual information, rather than describe process
steps. Furthermore, the inherent ambiguity of natural language can lead to dif-
ferent interpretations regarding the process that is described [14].

In this paper we significantly expand the techniques and results recently pre-
sented in [9], where we described robust tree-based patterns to be queried over
the dependency trees arising from the NLP analysis of the textual descriptions.
Patterns in [9] where only applicable in the context of a single sentence, which
made our approach unable to extract inter-sentence relationships. The contribu-
tion of this paper is therefore the extension of our previous contribution with a



more general set of patterns, resulting in a significant boost in the recall of the
original framework (see experiment results in section 5).

The paper is organized as follows: next section shortly describes the work
related to this contribution. Section 3 overviews the main components of our
proposal, presented in Section 4. Experiments and tool support are reported in
Section 5, whilst Section 6 concludes the paper and outlines future work.

2 Related work

For the sake of space, we only report here the related work that focuses on the
extraction of process knowledge from textual descriptions [1,4,13], or the work
that considers textual annotations in the scope of BPM [7,10].

For the former, the work by Gonçalves et al. [1] adopts important steps to
extract the different BPMN elements and the work by Friedrich et al. [4] is
acknowledged as the state-of-the-art for extracting process representations from
textual descriptions, so we focus our comparison on this approach. As we will
see in the evaluation section, our approach is significantly more accurate with
respect to the state-of-the-art in the extraction of the main process elements.
Likewise, we have incorporated as well the patterns from [13], and a similar
outcome is reported in the experiments. The main reason is that approach relies
on a deep NLP analysis and patterns on the syntactic structure of the sentence,
instead of a shallow analysis and flat patterns.

For the later type of techniques ([7,10]), we see these frameworks as the prin-
cipal application for our techniques. In particular, we have already demonstrated
in the platform https://modeljudge.cs.upc.edu an application of the use of
annotations in the scope of teaching and learning process modeling1.

3 Preliminaries

The core of our proposal is the use of deep NLP analyzers to convert a textual
description of a process into a syntax-semantic structure. Then, this structure is
mined using tree-shaped patterns to obtain a conceptual representation of the
process. Although other tools could be used, we resort to FreeLing as a NLP
analyzer, TRregex as a tree-oriented pattern matching tool, and ATDP as a
conceptual representation support. We describe each of them below.

3.1 Natural Language Processing

Linguistic analysis tools can be used as a means to structure information con-
tained in texts for its later processing in applications less related to language
itself. This is our case: we use NLP analyzers to convert a textual description of
a process model into a structured representation.

1 The reader can see a tutorial for annotating process modeling exercises in the
ModelJudge platform at https://modeljudge.cs.upc.edu/modeljudge_tutorial/.
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The NLP processing software used in this work is FreeLing2 [8], an open–
source library of language analyzers providing a variety of analysis modules for a
wide range of languages. More specifically, the natural language processing layers
used in this work are: tokenization & sentence splitting, morphological analysis,
PoS-Tagging, Named Entity Recognition, Word sense disambiguation, Depen-
dency parsing, Semantic role labeling and Coreference resolution. The three last
steps are of special relevance since they allow the top-level predicate construc-
tion, and the identification of actors throughout the whole text: dependency
parsing identifies syntactic subjects and objects (which may vary depending,
e.g., on whether the sentence is active or passive), while semantic role labeling
identifies semantic relations (the agent of an action is the same regardless of
whether the sentence is active or passive). Coreference resolution links several
mentions of an actor as referring to the same entity.

3.2 Annotated Textual Descriptions of Processes (ATDP)

ATDP is a formalism proposed in [10], aiming to represent process models on top
of textual descriptions. This formalism naturally enables the representation of a
wide range of behaviors, ranging from procedural to completely declarative, but
also hybrid ones. Different from classical conceptual modeling principles, this
highlight ambiguities that can arise from a textual description of a process, so
that a specification can have more than one possible interpretation3.

ATDP specifications can be translated into linear temporal logic over finite
traces [5,2], opening the door to formal reasoning, automatic construction of
formal models (e.g. in BPMN) from text, and other interesting applications
such as simulation: to generate end-to-end executions (i.e., an event log [15])
that correspdond to the process described in the text, which would allow the
application of process mining algorithms.

ATDP models are defined over an input text, which is marked with typed text
fragments, which may correspond to entities, or activities. Marked fragments can
be related among them via a set of fragment relations.

Entity fragments. The types of entity fragments defined in ATDP are:

– Role. The role fragment type is used to represent types of autonomous actors
involved in the process, and consequently responsible for the execution of
activities contained therein.

– Business Object. This type is used to mark all the relevant elements of the
process that do not take an active part in it, but that are used/manipulated
by process activities.

Activity fragments. ATDP distinguishes two types of activity fragments:

– Condition. It is considered discourse markers that mark conditional state-
ments, like: if, whether and either. Each discourse marker needs to be tailored
to a specific grammatical structure.

2 http://nlp.cs.upc.edu/freeling
3 In this work we consider a flattened version of the ATDP language, i.e., without the

notion of scopes.
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– Task and Event. Those fragment types are used to represent the atomic units
of work within the business process described by the text. Usually, these
fragments are associated with verbs. Event fragments are used to annotate
other occurrences in the process that are relevant from the point of view of
the control flow, but are exogenous to the organization responsible for the
execution of the process.

Fragment Relations. Text fragments can be related to each other by means of
different relations, used to express properties of the process emerging from the
text:

– Agent. Indicates the role responsible for the execution of an activity.

– Patient. Indicates the role or business object on which an activity is per-
formed.

– Coreference. Induces a coreference graph where each connected component
denotes a distinct process entity.

– Sequential. Indicates the sequential execution of two activity fragments
A1 and A2 in a sentence. We consider two important relations from [10]:
Precedence and Response. Moreover, to cover situations where ambiguities
in the text prevent selecting any of the two aforementioned relations, we also
incorporate a less restrictive constraint WeakOrder, that only applies in case
both activities occur in a trace.

– Conflicting. A conflict relation between two condition activity fragments
〈C1, C2〉 in a sentence indicates that one and only one of them can
be executed, thus capturing a choice. This corresponds to the relation
NonCoOccurrence from [10].

3.3 TRegex

In this paper, we use Tregex4 [6], a query language that allows the definition of
regular-expression-like patterns over tree structures. Tregex is designed to match
patterns involving the content of tree nodes and the hierarchical relations among
them. In our case we will be using Tregex to find substructures within syntactic
dependency trees. Applying Tregex patterns on a dependency tree allows us to
search for complex labeled tree dominance relations involving different types of
information in the nodes. The nodes can contain symbols or a string of characters
(e.g. lemmas, word forms, PoS tags) and Tregex patterns may combine those
tags with the available dominance operators to specify conditions on the tree.
Additionally, as in any regular expression library, subpatterns of interest may be
specified and the matching subtree can be retrieved for later use. This is achieved
in Tregex using unification variables as shown in pattern (2) in Figure 1.

Figure 1 describes the main Tregex operators used in this research to specify
pattern queries.

4 https://nlp.stanford.edu/software/tregex.html
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Operator Meaning A

B

E

C

F

K L

G

D

H I J

X << Y X dominates Y
X >> Y X is dominated by Y
X !>> Y X is not dominated by Y
X < Y X immediately dominates Y
X > Y X is immediately dominated by Y
X >, Y X is the first child of Y
X >- Y X is the last child of Y (1) E>>(A<<G) (4) F!>>A

X >: Y X is the only child of Y (2) E>>(A=x)>:(B=y) (5) H>:D

X $-- Y X is a right sibling of Y (3) K!>>B>>(A<D) (6) A<J

X $. Y X is the immediate left sibling of Y

Fig. 1. Some operators provided by Tregex (left). The tree on the right would match
patterns (1), (2), (3), and would not match patterns (4), (5), (6). Note that unless
parenthesized, all operators refer to the first element in the pattern. Pattern (2) uses
operator = to capture nodes A and B into variables x and y respectively.

4 Generalized Approach

4.1 Basic Approach: Intra-Sentence Analysis

In this paper we describe an extension to the approach presented in [9]. This
subsection summarizes the basic original approach, and following subsections
provide details on the added extensions, which mainly consist of the extraction
of relations between actions or conditions in different sentences, as well as an
extended evaluation covering not only entities and actions, but also relations.

In [9] we presented a proposal to extract Business Process elements (entities,
actions, conditions, events, and relations) from a process textual description.

The approach consists of: (a) Use a full-fledged NLP analysis pipeline [8]
to analyze the text and extract verbal predicates, involved actors and objects,
syntactic trees of all sentences, and coreferences between different mentions of the
same actor/object, and (b) apply a cascade of TRegEx patterns on the output
of the NLP preprocess to extract and elaborate the relevant process information.
These patterns perform the following tasks:

1. Select the appropriate description for an entity or object. For instance, in the
sentence “The process starts when the female patient is examined by an out-
patient physician, who decides whether she is healthy or needs to undertake
an additional examination” the results of the NLP semantic role labeling
step for Agent would return the whole subtree headed by physician (i.e. an
outpatient physician, who decides. . . examination).
The used Tregex patterns will strip down such a long description removing
the determiner and the relative clause, while keeping the core actor/object
and its main modifiers, thus extracting respectively outpatient physician

as a role, and female patient as a business object.

2. Next step is identifying relevant activities. The NLP preprocess detects all
predicates in the text (mainly, all verbs are considered a predicate, plus
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some deverbal nouns such as ”reception”, ”meeting”, etc). However, although
many verbs in a process description may be predicates from a linguistic
perspective, they do not correspond to actual process activities. Thus, we
use a set of patterns that discard predicates unlikely to be describing a
relevant process task, or relabel them as condition or event fragments:
(a) More specifically, we use a set of predicates that check for syntactic

structures involving conditional clauses (if, whether, either, ...) and the
appropriate nodes in the tree are marked as condition fragments. In
this step, we determine, for instance, that she is healthy and needs

an additional examination are conditions in the sentence “... who
decides whether she is healthy or needs an additional examination.”.

(b) Another set of patterns deal with syntactic structures involving keywords
like when, once, as soon, whenever, etc, and mark the related predicates
as event fragments. These patterns allow us to identify the fragment
confirm(payment) as an event fragment in the sentence “Once the pay-
ment is confirmed, the ZooClub department can print the card...”

(c) A third batch of patterns takes care of discarding activities that are
not relevant to the process. To this end, we use two different strategies:
one is removing all activities related to auxiliary, control, or subjective
verbs (be, have, start, want, think, believe, etc.) which are unlikely to
describe an actual process task. The second strategy relies on removing
actions described in a subordinate clause. For instance, in the sentence
“..., the examination is prepared based on the information provided by
the outpatient section”, the verbs base and provide would be removed as
activities, since the main action described by this sentence is just prepare
(examination), and the subordinate clause just gives additional details
on the object or procedure, but not on the actual process activity.

3. The last set of patterns deal with relations between activities. In our original
work we tackled only relations between two activities in the same sentence.
We considered different types of relations:
(a) Precedence: We use patterns to detect sentences relating one event

and one activity in a precedence relation. E.g. in the sentence “An
intaker keeps this registration with him at times when visiting the pa-
tient”, it would extract the sequential relation from visit(patient) to
keep(registration).

(b) Response: This relation is identified between condition and activity frag-
ments, which typically occur in conditional sentences such as “If the pa-
tient signs an informed consent, a delegate of the physician arranges an
appointment with one of the wards and updates the HIS selecting the first
available slot”. From this sentence, we would extract the relation that
arrange (appointment) responds to sign(consent).

(c) Weak Order: There are many pairs of activities appearing in the same
sentence where some kind of sequential order can be deduced, but it
is not possible for an automatic system to determine their exact kind
of relation. In these cases, we take a conservative approach and extract
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the least restrictive constraint, WeakOrder. For instance, in the sentence
“The Payment Office of SSP generates a payment report and then pays
the vendor”, we could extract that generate and pay are in WeakOrder.

(d) Conflict: Conflict relations can be determined between condition frag-
ments, provided they are in the right syntactic structure. In this way, we
can extract the constraint that the sample can not be safely used and
contaminated at the same time from the sentence “... decides whether the
sample can be used for analysis or whether it is contaminated”, or that
conditional fragments approve and deny from the sentence “The next
step is for the IT department to analyse the request and either approve
or deny it.” are considered in conflict.

4.2 Inter-Sentence Analysis

Patterns used in [9] for relation extraction summarized in Section 4.1 aimed to
capture relations between two activities/events mentioned in the same sentence.
The main contribution of this paper is the extension of these patterns to capture
also relations between activities or events located in different sentences.

To achieve this goal, since TRegEx is able to handle a single tree at a time,
we first need to join together the syntactic trees for all sentences in the text in a
single tree. For this, we add two kinds of artificial parent nodes: A <PARAGRAPH>

node that has as children the root nodes for each of the sentences in the same
paragraph, and a <DOCUMENT> node that has as children all the <PARAGRAPH>

nodes. With that, we obtain a unique tree for all the document, and we can ap-
ply TRegEx patterns that span over more than one sentence. Figure 2 shows an
example of a tree representing a short document. We apply patterns on the doc-
ument tree to extract conflict and sequence relations between activities, events,
or conditions detected in previous steps (see sec. 4.1.)

Conflicts. Conflicts between activities in the same sentence are detected using
patterns described in [9]. The following patterns deal with conflicts between ac-
tivities in different sentences. Their goal is to instantiate in variables originRef
and destinationRef verbs that head sentences which may contain nodes marked
as <ACTIVITY> or <CONDITION> on which the relation will be extracted.

PC1 /verb/=originRef > /<PARAGRAPH>/

<< /<CONDITION>/

$. (/verb/=destinationRef << /<CONDITION>/)

PC2 /verb/=originRef > /<PARAGRAPH>/

<< /<CONDITION>/

$. (/verb/ !<< /<CONDITION>/

$. (/verb/=destinationRef << /<CONDITION>/))

Pattern PC1 checks for a verb directly under a <PARAGRAPH> (i.e. main sen-
tence verb) that has a condition as a child, and that its right sibling (i.e, main
verb in the following sentence) also has a condition. This would extract a conflict
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DOCUMENT

PARAGRAPH

arrive
verb

<ACTION>

request
noun

a
det

PARAGRAPH

send
verb

<ACTION>

if
adv

accepted
verb

<CONDITION>

it
pron

is
aux

manager
noun

the
det

.
it

pron

to
prep

sales
noun

archive
verb

<ACTION>

otherwise
adv

secretary
noun

the
det

it
pron

Fig. 2. Document tree for a text with two paragraphs: The first one with the sentence
“A request arrives”, the second with two sentences: “If it is accepted, the manager sends
it to sales. Otherwise, the secretary archives it”. Nodes in the syntactic dependency
trees have been marked as <ACTION> or <CONDITION> in previous steps.

between proceed and repeat in the pair of sentences “If sample is ok, proceed with
examination. If contamination is detected, repeat sampling.” Pattern PC2 cap-
tures the same kind of structure, when there is an additional sentence without
a condition in between (e.g. “If sample is ok, proceed with examination. Fill out
treatment request form. If contamination is detected, repeat sampling.” )

Sequences. A second batch of patterns takes care of extracting sequence rela-
tions between activities in contiguous sentences. As in the case of conflicts, the
patterns instantiate the variables originRef and destinationRef to candidate
subtrees that are then searched for <ACTIVITY> or <CONDITION> nodes. Some
patterns directly instantiate the variable destination, the actual target of the
extracted relation.

PS1 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/=destinationRef
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< /afterwards|then|immediately/)

PS2 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/ << (/<CONDITION>/=destination << /or/))

PS3 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/ << (/or/ << /<CONDITION>/=destination))

PS4 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/ << /<CONDITION>/=destination

< /otherwise|else/)

PS5 /verb/=originRef > /<PARAGRAPH>/

$. (/verb/ << /<CONDITION>/

< (/otherwise|else/=destination)

Pattern PS1 extracts a sequence relation between the main verb of a sequence
and the main verb of the next one provided the latter has a modifier such as
afterwards, then, immediately, etc. Patterns PS2 and PS3 establish sequence re-
lations between an activity and or-ed conditions in the following sentence (e.g
extract sequences send→fill and send→reject in sentences “Send form to cus-
tomer. The customer can fill the form or reject to do it.”) Patterns PS4 and PS5
check a similar case, but where the second sentence has an ”if-else” structure.
They would extract the sequence relations send→accept and send→cancel in
the sentence “A budget is sent to the customer. If he accepts it, the bill is issued,
otherwise the operation is cancelled.”

5 Tool Support and Experiments

This section presents experiments evaluating the performance gain obtained
when including patterns to capture relations between activities or events lo-
cated in different sentences. We report two different results: First, we report
relations extraction performance using a baseline based on [9] where we extract
relations only for pairs in the same sentence. Second, we report results applying
patterns to extract both intra- and inter-sentence relations.

The evaluation is performed comparing the relations extracted against gold
standard manual annotations. For both table 1 and table 2, the test data set
used in our experiments are the same as that used in the original proposal [9],
which consists of 18 text-model pairs, each example includes a textual process
description paired with the corresponding BPMN models created by a human.

The first 13 models stem from material in the appendix of [3], and the last 5
from our academic dataset5 used in [11].

As a gold reference for evaluation, we manually created one ATDP for each
example following the activities and relations in those BPMN models, i.e. mark-
ing as activity fragments only the text pieces that had a corresponding element
in the BPMN model and connecting only the activities fragments that had a
corresponding relation in the BPMN model.

5 https://github.com/setzer22/alignment_model_text/tree/master/datasets/

NewDataset

9

https://github.com/setzer22/alignment_model_text/tree/master/datasets/NewDataset
https://github.com/setzer22/alignment_model_text/tree/master/datasets/NewDataset


Source
Conflict Sequence

#gold #pred #ok P R F1 #gold #pred #ok P R F1

1-1 bicycle manufacturing 2 1 1 100 50 67 59 8 6 75 10 18
1-2 computer repair 1 0 0 0 0 0 59 9 7 78 12 21
2-1 sla violation 5 2 0 0 0 0 372 46 14 30 4 7
3-1 2009-1 mc finalice sct 0 0 0 0 0 0 52 4 3 75 6 11
3-2 2009-2 conduct 1 0 0 0 0 0 20 8 4 50 20 29
3-6 2010-1 claims notification 2 0 0 0 0 0 63 9 7 78 11 19
4-1 intaker workflow 0 0 0 0 0 0 596 17 5 29 1 2
5-1 active vos tutorial 3 0 0 0 0 0 15 4 3 75 20 32
6-1 acme- 1 0 0 0 0 0 340 22 11 50 3 6
7-1 calling leads 1 0 0 0 0 0 13 2 1 50 8 13
8-1 hr process simple 0 0 0 0 0 0 15 7 6 86 40 55
9-2 exercise 2 3 0 0 0 0 0 11 6 6 100 55 71
10-2 process b3 3 0 0 0 0 0 114 7 3 43 3 5
1081511532 rev3 1 0 0 0 0 0 47 9 5 56 11 18
1120589054 rev4- 0 0 0 0 0 0 66 9 6 67 9 16
1364308140 rev4 1 0 0 0 0 0 21 8 4 50 19 28
20818304 rev1 3 2 2 100 67 80 36 11 6 55 17 26
784358570 rev2 2 0 0 0 0 0 126 11 6 55 5 9

TOTAL 29 5 3 60 10 18 2025 197 103 52 5 9
Table 1. Evaluation of relation extraction using only intra-sentence patterns. Sequence
relations are evaluated on the transitive clausure of both the sets of gold annotations
and annotations produced by the system.

Intra-Sentence. Results for the first scenario (only intra-sentence patterns)
are shown in Table 1, and correspond to results obtained using the patterns de-
scribed in [9], which rely on extracting relations just within sentences. Precision
is the percentage of right relations over predicted relations (P = #ok/#pred).
Recall is the percentage of expected relations extracted (R = #ok/#gold). F1

score is the harmonic mean of precision and recall (F1 = 2PR/(P + R)). We
only count extracted relations as right if they match the gold annotations in
type (<SEQUENCE>, <CONFLICT>). In both experiments, sequence relations are
evaluated over the transitive closure of the sequence annotations.

Inter-Sentence. In the second evaluation scenario, in addition to patterns
created in [9], we use inter-sentence patterns described in Section 4.2.

Obtained results presented in Table 2 show that our new contribution ex-
tracts more relations, thus obtaining a large boost in recall (from 0.05 to 0.70
overall) with a very mild loss of precision (from 0.52 to 0.50 overall). Recall is
boosted both for conflict and sequence relations, while precision is increased for
conflicts, but slightly decreased for sequences.
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Source
Conflict Sequence

#gold #pred #ok P R F1 #gold #pred #ok P R F1

1-1 bicycle manufacturing 2 2 2 100 100 100 59 90 54 60 92 72
1-2 computer repair 1 0 0 0 0 0 59 65 33 51 56 53
2-1 sla violation 5 4 2 50 40 44 372 572 152 27 41 32
3-1 2009-1 mc finalice 0 0 0 0 0 0 52 57 42 74 81 77
3-2 2009-2 conduct 1 0 0 0 0 0 20 33 19 58 95 72
3-6 2010-1 claims 2 1 1 100 50 67 63 76 53 70 84 76
4-1 intaker workflow 0 0 0 0 0 0 596 906 455 50 76 61
5-1 active vos tutorial 3 3 3 100 100 100 15 16 12 75 80 77
6-1 acme- 1 0 0 0 0 0 340 561 287 48 84 61
7-1 calling leads 1 1 1 100 100 100 13 41 13 32 100 48
8-1 hr process simple 0 0 0 0 0 0 15 21 15 71 100 83
9-2 exercise 2 3 6 3 50 100 67 11 10 9 90 82 86
10-2 process b3 3 1 1 100 33 50 114 138 83 60 73 66
1081511532 rev3 1 1 1 100 100 100 47 41 30 73 64 68
1120589054 rev4 0 0 0 0 0 0 66 78 66 85 100 92
1364308140 rev4 1 0 0 0 0 0 21 26 10 38 48 43
20818304 rev1 3 3 3 100 100 100 36 29 19 66 53 58
784358570 rev2 2 3 2 67 100 80 126 118 85 72 67 70

TOTAL 29 25 19 76 66 70 2025 2878 1437 49 71 59
Table 2. Evaluation of relation extraction using both intra- and inter- sentence pat-
terns. Sequence relations are evaluated on the transitive clausure of both the sets of
gold annotations and annotations produced by the system.

6 Conclusions and Future Work

We have presented an extension of our work in [9], consisting in adding syntax-
tree based patterns to capture relations between activities or events located in
different sentences. Results show that crossing the sentence boundaries is a highly
productive strategy, since many more relations can be extracted. Also, the fact
of using syntax-aware patterns, and not just flat regular expressions allows this
extension to be done with almost no loss of precision.
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1. João Carlos de A. R. Gonçalves, Flávia Maria Santoro, and Fernanda Araujo Baião.
Business process mining from group stories. In Proceedings of the 13th International
Conference on Computers Supported Cooperative Work in Design, CSCWD 2009,
April 22-24, 2009, Santiago, Chile, pages 161–166. IEEE, 2009.

2. Giuseppe De Giacomo, Riccardo De Masellis, and Marco Montali. Reasoning on
LTL on finite traces: Insensitivity to infiniteness. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence, pages 1027–1033. AAAI Press, 2014.

11



3. Fabian Friedrich. Automated generation of business process models from natural
language input. School of Business and Economics. Humboldt-Universität, 2010.

4. Fabian Friedrich, Jan Mendling, and Frank Puhlmann. Process model genera-
tion from natural language text. In Haralambos Mouratidis and Colette Rolland,
editors, Advanced Information Systems Engineering, pages 482–496, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

5. Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear
dynamic logic on finite traces. In IJCAI, 2013.

6. Roger Levy and Galen Andrew. Tregex and tsurgeon: tools for querying and
manipulating tree data structures. In LREC, pages 2231–2234. Citeseer, 2006.
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Abstract. The execution of a business process is often determined by
the surrounding context, e.g., department, product, or other attributes
an event provides. Process discovery mainly focuses on the executed ac-
tivities, although the context of a case may be needed to accurately
represent a process instance, e.g., for clustering, prediction, or anomaly
detection. Hence, in this paper, we present a representation learning
technique (Case2vec) using word embeddings for business process data
to better encode process instances. Our work extends Trace2vec and in-
corporates an additional semantic level by using not only the activity
name but also the attributes and thereby incorporating the context. We
evaluate our approach in the context of trace clustering. Additionally, we
show that Case2vec can be used to abstract events which are semantically
similar but syntactically different. We also show that word embeddings
allow for interpretability when employing vector space arithmetic.

Keywords: Representation learning · Word embeddings · Process con-
text.

1 Introduction

In recent years, process mining has become an important technology for organi-
zations analyzing their business processes. Event logs recorded by process-aware
information systems can be analyzed with process mining to obtain valuable
insights about how a business process is executed in reality. However, process
mining techniques primarily focus on the control-flow of a process without con-
sidering the context a case is executed in, e.g., department, product, customer,
or other attributes an event provides. This additional process context may help
to further reveal patterns within the event log, which are not visible in the
control-flow perspective, to enhance process mining techniques. Our goal is to
learn vector representations of process cases that include this context informa-
tion that can be used in various process mining techniques.

Vector representations of cases are required by many techniques in process
mining such as trace clustering [12, 11, 4], prediction [3], and anomaly detec-
tion [10, 13]. Trace clustering aims to improve the discovery of process models
by grouping similar cases. Clusters of cases that are executed in similar contexts
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can be generated, allowing the user to compare process models of different con-
texts. Improved prediction models can be learned that also consider the process
contexts. Furthermore, anomaly detection methods based on extended vector
representations can provide more reliable results. These are just a few examples
for potential use cases of context-including vector representations.

Our work is based on a technique proposed in the area of natural language
processing (NLP) for learning vector representations of words and sentences.
Similar to a sentence with words, a case of a business process consists of a
sequence of activities. Activities are also not executed in random order, but
according to a predefined grammar, the underlying process model. The core
idea is to model similarities and intentionally avoid comparing by words only,
because we know that different words or sentences can bear the same meaning.

A previous work, Trace2vec [4], showed that the representation learning ap-
proach Word2vec [8], which constructs a vector space of the words of a corpus
to capture similarities, can also be used on process data. To model such similar-
ities, a large event log is crawled to order activities which occur together within
this vector space. However, Trace2vec also showed some difficulties in the exper-
iments with the BPIC15 event log: First, the vocabulary of event logs is much
smaller compared to the vocabulary of natural language. Second, the context of
a case is not taken into account, which can provide further details about the de-
pendencies between activities and attributes. For instance, if the BPIC15 event
log is clustered into the municipalities without considering the process context,
it is assumed that the control-flow alone clearly determines the municipality. In
highly standardized processes like governmental processes, the control-flow is the
very part that does not separate one trace from another, but rather its context,
e.g., an officer working exclusively in one or a few municipalities.

In this paper, we present an extended approach based on Trace2vec that
can indeed lead to sensible results when evaluating these representations for a
trace clustering task. We name this extension Case2vec, because it uses event
and case attributes to capture the process context. Our extension increases the
vocabulary that allows to better exploit case relationships. Besides our extension,
we examine a proper hyperparameter strategy that can better deal with the
sparse vocabulary in business process data. We revisit the original approach
using the BPIC15 event log and show how parameter tuning and especially
incorporating attributes improves results. We also show a wider range of results
on the BPIC19 event log, which holds not only more traces, but also more
attributes.

As additional tasks we investigate two useful applications of the neural net-
work architecture presented: (1) Event abstraction allows to show that syntacti-
cally different activities are semantically similar, given enough traces in a similar
context. (2) Arithmetic operations within the vector space keep semantic mean-
ing which we show in an interpretability task. This is done on an artificial paper
writing process to show the task more clearly because we know how the activities
in this process depend on each other.
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2 Related Work

Process case representations are used by various process mining techniques such
as trace clustering, anomaly detection, and prediction. Different representations
have been proposed in the related work. A simple representation technique is
the bag-of-words model which is used to compute the similarity of sentences
based on the co-occurrences. Song et al. [12] encode sequences of activities as
one hot vectors, in which each component corresponds to an activity. Transitions
between activities are used instead by Bose et al. [1] to compare cases.

Besides manually defined case representations, automatically generated rep-
resentation vectors can be learned. For instance, a word embedding is a feature
learning technique in which words are mapped to a vector space. Words appear-
ing together frequently within a text corpus will be mapped close together within
a vector space to capture their semantic relationship. Word embeddings do not
rely on syntactical features and, therefore, can compute a similarity value of two
sentences, even if none of the words of each sentence is the same. De Koninck et
al. [4] transferred the idea of Word2vec [8] and Doc2vec [7] to process data. An
LSTM and CBOW-based approach was introduced by Bui et al. [2]. A super-
vised representation learning approach based on conditional random fields for
event abstraction was introduced by Tax et al. [14].

Representation learning has been used for different analysis methods. Trace2-
vec representations were used to cluster traces into similar groups in [4]. Tavares
et al. [13] use the same representations to identify anomalous cases.

A drawback of most related work in this field is the limitation to the pure
control-flow, namely the sequence of activities to learn case representations.
Thus, the process context of the cases is not considered.

3 Case2vec

In NLP, word embeddings use the context of the words in a document to exploit
semantic similarities of words by mapping them to a vector space. The closer
these words appear together in the document the closer they are mapped together
in the vector space. Thereby, semantic similarity of different statements can be
confirmed as long as they are mapped close together.

As already mentioned, a popular technique for modeling word embeddings
is Word2vec [8]. The task is to model what is in the neighborhood of a word.
This can be done using two different approaches. We can predict a word given
its surrounding words (continuous bag of words, short CBOW), or the other way
round, predict the surrounding words given one word (skip-gram). For example,
in the sentence I like ... process mining, continuous bag of words would insert
words of similar representation to fill the gap, e.g., business. Vice versa, skip-
gram would take the word business and amend it with preceding and succeeding
words given by example sentences in the training data.

Word2vec learns a CBOW or skip-gram model using a neural network and
implicitly constructs an abstract representation of the vocabulary and its rela-
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Fig. 1. Architectural overview of Case2vec where each trace’s activity names, event,
and case attributes are concatenated as single words.

tionships between each other. Similarly, activities within a sequence of a busi-
ness process are also dependent on the preceding and succeeding activities which
form the context. We can employ the idea of word embeddings and map activ-
ities to a vector space such that activities in similar regions are related to each
other according to their function in the underlying process. Doc2vec serves as
a representation of a collection of words, namely a document. Analogous to the
Word2vec model, in Doc2vec a word is a document and we want to predict the
surrounding documents. The structure of a trace from an event log is of similar
form when considering activity names as words in a trace sequence. The resulting
embedding space is a representation where activities and traces, given enough
sample traces, are projected according to their role in the overall process model.

The embedding on the control-flow level is constructed by using the activity
name as a single word. The set of different activity names forms the vocabulary of
the embedding, and a Doc2vec representation is constructed by treating a trace
as a document. The control-flow level (Fig. 1 without event and case attributes)
has been introduced as Trace2vec [4]. One drawback of this approach is the fo-
cus on the control-flow. Therefore, we introduce Case2vec, which incorporates
the different kinds of attributes by concatenating them with the corresponding
activity name. The key idea is to incorporate attributes in addition to activ-
ity names to enlarge the vocabulary and induce a better separation of cases.
If attributes are taken into account, the concatenation of the activity and its
respective attributes becomes an additional word and, therefore, includes the
process context.

Fig. 1 shows the architecture with the attribute extension, where the words
of the vocabulary are constructed by concatenating Activity, Resource, and
Vendor. We also evaluate the approach either using event or case attributes.
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4 Experimental Evaluation

We implemented1 the described representation learning techniques using gensim,
scikit-learn and fastcluster in Python to evaluate their performance. We use two
Business Process Intelligence Challenge (BPIC) event logs, an amended version
of them, and a fully synthetic paper writing process to evaluate on the follow-
ing objectives: Trace clustering, event abstraction, and interpretability through
vector arithmetic operations in the vector space.

In the following, we describe the event logs, the experimental setup and report
the results.

4.1 Datasets

We use real-life and artificial event logs to evaluate the different objectives.

Real-life Event Logs We use the BPIC15 [5] and BPIC19 [6] event logs to
compare the applicability of the different approaches. We select a case attribute
for both event logs that can be considered as the ground truth label for clustering.
Although we do not know in advance if this process provides features that will
lead to good clustering results with this label, we are not necessarily interested
in the best clustering result, but rather how incorporating different attributes
can influence the clustering performance.

For BPIC15, event logs are already split into five different municipalities. In
BPIC19, the case attribute Item Type is used as the cluster label without the
Standard cases to obtain evenly distributed clusters.

During the experiments for event abstraction we amended the real-life event
logs with noise or additional attributes. For the event abstraction task, we
amended activity names with random numbers in a certain amount of traces
to show that the method is robust to small changes in activity names.

Artificial Event Log: Paper Writing Process The artificial example event
log is based on a synthetically generated process depicted in Fig. 2. It describes
the main steps in a scientific paper writing process from identifying a problem to
the submission of the paper. The activities are dependent on each other according
to their sequential order. This event log is more comprehensible for interpreting
the results of the vector arithmetic experiment. For the experiments we sampled
5 000 traces of this process according to [9].

4.2 Real-life Event Logs: Trace Clustering

In the first experiment, we use the case representations for clustering cases into
their classes to show applicability for process context separation.

1 Source code publicly available at: https://github.com/alexsee/case2vec
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Fig. 2. Overview of the paper writing process [9].

Experimental Setup Each event log is used individually to train the network
according to the description in Sect. 3. For training, activities and attributes are
used and none of the sequences are trimmed. Afterwards, we obtain the internal
representation of each case and use the feature vectors as input for clustering.

Taking into account that process data in comparison to natural language
has shorter sentence length and substantially smaller vocabulary, we employ
a hyperparameter strategy to overfit the dataset for the clustering task. This
is done using the ground truth label as an attribute with the goal to reach a
Normalized Mutual Information (NMI) measure of 1.0 to ensure that the trained
vector space has the capacity to model the underlying processes. This step is
important before running the actual experiments to exclude weak results because
of an impaired modeling capability of the underlying neural network. After a
set of parameters is found that can overfit the dataset, the same optimization
strategy can be employed during the actual experiments to maximize the NMI
without the ground truth label.

In our parameter optimization strategy, we first optimize the vector size.
We vary the vector size of the hidden and the embedding layer (2, 3, 4, 8,
16, 32, 64, 128, 256), and the number of epochs (10, 25, 50). Next, we optimize
the window size of the embedding which determines how many activities before
and after the current activity are considered. A value 5 or 7 seems optimal,
and similar to the vector size, larger values do not improve the result and only
run the risk of overfitting. Training epochs are varied between 10 and 50. The
other parameters were standard parameters according to [4]. We trained the
embedding with sg = 0 for the CBOW model, a learning rate set constant with
lr = 0.025 for both Trace2vec and Case2vec and the decay factor alpha to 0.002.
The number of inference epochs is set to 50. For clustering we opted to use
hierarchical clustering. As a distance metric we use cosine distance to avoid a
bias when dealing with traces of different length.

As an evaluation metric, we measure the NMI. We analyze the results using
the non-parametric Friedman test. The Bonferroni corrected pairwise Wilcoxon
signed-rank test is used for post-hoc analysis. We further report Kendall’s W
effect size.
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Table 1. Best clustering performance grouped by approach, configuration, and event
log.

Log Approach Vector Size Epochs NMI

BPIC15 Trace2vec (original) 64 40 0.080
Trace2vec (optimized) 4 50 0.132
Case2vec (org:resource) 8 25 0.980
Case2vec (Case Type) 3 25 0.010
Case2vec (org:resource + Case Type) 8 50 0.983
Case2vec (Responsible Actor) 128 25 0.398
Case2vec (org:resource + Responsible Actor) 4 50 0.424

BPIC19 Trace2vec 32 10 0.560
Case2vec (org:resource) 128 50 0.657
Case2vec (org:resource + Document Type) 16 50 0.566
Case2vec (Document Type) 128 25 0.591
Case2vec (org:resource + Item Category) 16 25 0.626
Case2vec (Item Category) 256 50 0.805
Case2vec (org:resource + Vendor) 128 25 0.330
Case2vec (Vendor) 2 50 0.296

Results As a first step, we recreated the results by De Koninck et al. using the
BPIC15 event log. As depicted in Table 1, Trace2vec reaches an NMI of 0.080 and
increases to 0.132 after hyperparameter optimization. Using Case2vec with the
case attribute Responsible Actor leads to a significant performance increase
up to 0.398. The event attribute org:resource, which refers to the executing
user, shows a performance of 0.980. Combining org:resource with one of the
case attributes Case Type or Responsible Actor decreased the performance.

For the BPIC19 event log, Trace2vec reaches a performance up to 0.560.The
case attribute Item Category reached the highest results with 0.805. How-
ever, using the Vendor results in a lower NMI than the control-flow only. Also,
combining attributes also does not guarantee better results. Used separately,
org:resource results in an NMI of 0.657 and Document Type in an NMI of
0.591. Combining the two leads to an NMI of 0.566, which results in a lower
NMI than used separately.

Detailed results regarding the vector size are depicted in Fig. 3. The anal-
ysis of the results confirmed significant differences (χ2(2) = 108, p < .001,
W = 1) between the approaches with a large effect. Post-hoc tests confirmed
differences (p < .001) between all approaches with Case2vec performing better
than Trace2vec. Incorporating org:resource lead to a significant better per-
formance (p < .001) for BPIC15. For BPIC19, we discovered consistent results
across the different parameter configurations, still there are significant differ-
ences (χ2(2) = 24.111, p < .001, W = .223) between the approaches. Similar
to BPIC15, post-hoc tests confirm significant (p < .001) differences between all
approaches.
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Fig. 3. Clustering results grouped by vector size, approach, configuration, and event
log with 50 epochs.

4.3 Amended Real-life Event Logs: Event Abstraction

The goal of event abstraction is to identify similar traces although activity
names are slightly different. Eventually, these activity names can be adjusted
to clean the event log. An example would be the activity name PR created and
Create PR, which describes the same action with just a different name. The idea
is to identify activities with similar function within the process so that a vec-
tor representation will allocate both activities close together in the vector space
despite their different names.

The level of distorted activity names ranges from 0%, which is the normal
case, up to 50%. The number of variations indicates the number of noise which
is added to the activity name, e.g. letters or numerals. For example, if there are
2 variations and a 20% distortion level, the same random number is added to
20% of the traces, and the remaining 80% describes the unmodified variation.
In case of 6 variations, besides the undistorted traces, there are traces distorted
with 5 different random numbers to further increase uncertainty. Fig. 4 shows
results for different levels for different variations of the activity names. Case2vec
with event attribute shows consistent results with deviations of ≤ 0.1 in NMI
for distortion levels from 0% to 40%. A larger deviation of ∼ 0.1 can only be
seen with Trace2vec for 20% distortion.
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Fig. 4. Overview of the results of the event abstraction task.
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Table 2. More paper process interpretability tasks

Add Subtract Top Result

Experiment, Develop Method, Submit Final Decision Conduct Study
Conclude, Review, Submit Final Decision Develop Method
Develop Method, Submit Final Decision Conclude
Final Decision Submit Review
Experiment, Conclude Submit Develop Method

4.4 Synthetic Paper Process: Vector Arithmetic Interpretability

Since representation vectors are spanned within a vector space, arithmetic oper-
ations can be performed between vectors. The famous king - man + woman =
queen example from Word2vec showed that representations can contain impor-
tant semantic relationships. In this experiment, we investigate if vector arith-
metic operations can also be used with process data. For testing the interpretabil-
ity task, we have to come up with a certain scenario which allows a semantic
interpretation. We use the paper writing process (see Fig. 2) because it is not
pseudonymized and the activities can be read and understood by an analyst.

The first scenario is that the experiment was done and the paper was sub-
mitted, but the final decision has not taken place, because something is still
missing that fulfills the criteria for an accepted paper. A possible composition
would be to add the experiment and submission but subtract the final decision.
When performing Experiment + Submit − Final Decision we would expect
that something between Experiment and Submit is missing so that the Final

Decision is still pending. The result of this computation returns Evaluate as
the top result. The second top result is Conduct Study and the third top result
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is Review. Table 2 shows more example interpretability tasks. The result column
shows the top result.

5 Discussion

In this section, we elaborate on the results from the experiment section and
follow the order presented there.

5.1 Trace Clustering

BPIC15 Our experiments showed that hyperparameter optimization increases
the performance of the original approach, but did not lead to useful results.
However, it is not known if the separation by municipality solely based on the
control-flow is possible. The process of a building permit application may be pre-
sumably highly standardized and, therefore, not a useful criterion for separating
by municipality.

The results of our experiments show that the user of an activity is an attribute
that is able to separate the cases into the five municipalities. This may be an
obvious observation because persons may only work for a specific municipality.
However, the event log also contains several persons that work across multiple
municipalities. Case2vec, which includes the control-flow and the attributes, is
able to find case representations for clustering that discriminate between the
municipalities.

BPIC19 For the BPIC19 experiments, we found that Trace2vec performed
significantly better compared to the BPIC15 event log. The best result was
achieved by incorporating the Item Category case attribute, which seems to be
strongly related to the Item Type. Interestingly, not all attributes improve the
control-flow performance. For instance, the case attribute Vendor decreased the
performance down to 0.290. This could be explained by the fact that a vendor is
not a good separating attribute when categorizing according to an item type a
company purchases. This would be the case if the company acquires most of its
items from the same vendor regardless of the category of the item. Hence, even
if the control-flow is able to separate by item type to some extent, an attribute,
which is identical for most items, like a vendor, can obfuscate the results. This
means that we cannot arbitrarily add more attributes for better results.

Case2vec seems to be sensitive to the selection of the attributes. Even though
we showed that those methods provide good results after hyperparameter tun-
ing, applying them to real-life event logs can be difficult because the quality of
the result can usually not be determined since the ground truth is unknown.
Attributes that contain random values or do not contribute to the desired clus-
tering result lead to a significant drop in performance. However, when selecting
appropriate attributes, Case2vec can outperform Trace2vec significantly. Still,
finding good attributes can be difficult without prior knowledge.
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5.2 Event Abstraction

For event abstraction, we ran several experiments with different amounts of
traces including random numbers. We also changed the amount of different ran-
dom numbers. Every attribute including a different random number will increase
the vocabulary size. Still, Case2vec was able to identify and group traces ac-
cording to their function despite them being amended. An even more interesting
application than finding functionally similar traces with different names would
be finding functionally similar traces with different performance metrics like cost
or time. An analyst could study why these traces are similar in their role but
differ in cost or time.

5.3 Interpretability Task

The example computation Experiment + Submit − Final Decision returns
Evaluate as the top result and Conduct Study as the second top result. Both
are sensible choices when we assume that Evaluate has already taken place
and both are performed before Submit. The third top result is Review, which
takes place directly after Submit and also shows a sensible reason assuming
Evaluate and Conduct Study have been taken place and therefore cannot be
the reason the submission is still blocked. Further results shown in Table 2 can
be interpreted with similar reasoning.

However, in real-life event logs the interpretation of activities is not as clear
because often they do not have interpretable names and even if, these names do
not necessarily relate to a role in the process its name might suggest. Addition-
ally, the developers of the Word2vec framework remark that vector arithmetic
is not guaranteed to always produce sensible results. It is still interesting to see
that on a small and well-defined event log the vector representation can deliver
these results.

6 Conclusion

In this paper, we presented Case2vec, a representation learning technique based
on a vector space model. It is trained using a neural network in an unsupervised
fashion by using the sequence of activities including event attributes. It does not
rely on any prior knowledge about the process and is able to learn robust and
compact representations automatically.

The results of the evaluation in a trace clustering task showed that Case2vec
is able to learn a good representation given useful control-flow or case attributes.
When selecting appropriate attributes Case2vec can outperform Trace2vec sig-
nificantly as shown in our real-life evaluation. The experiments on the additional
tasks like event abstraction or arithmetic operations in the constructed vector
space support that the learned representation is able to capture semantic charac-
teristics of the process. However, Trace2vec and Case2vec seem to be sensitive to
the selection of the attributes and finding good attributes can be difficult with-
out prior knowledge. Feature selection methods from machine learning may help
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to identify attributes with a high information value, helping analysts to select
useful attributes. Another limitation is that Case2vec only supports categorical
attributes. Numerical values could be incorporated by grouping them into bins
beforehand.

In conclusion, the internal representation of Case2vec is highly useful for
trace clustering, finding functionally similar traces or executing vector space
arithmetic operations for interpretability tasks.

Acknowledgement. This work is funded by the German Federal Ministry of
Education and Research (BMBF) research project KI.RPA [01IS18022D].
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Abstract. Conformance checking is concerned with the task of assessing
the quality of process models describing actual behavior captured in an
event log across different dimensions. In this paper, a novel approach
for obtaining the degree of recall and precision between a process model
and event log is introduced. The approach relies on the generation of a
so-called “antilog”, randomly constructed from the activity vocabulary,
on one hand, and a simulated “model log”, which is played-out from the
given model. In the case of recall the antilog and model log are used
to train a recurrent neural network classifier. This network allows for
calculating the probability of a trace being part of the model log or the
antilog. If thereupon the event log is fed to the neural network, a value
for recall can be obtained. In the case of precision the neural network is
trained using a given event log and the antilog, and the model log is fed
to it afterwards. We show that this new method can be used to measure
global recall and precision correctly in some common examples.

Keywords: Process Mining · Conformance Checking · Machine Learn-
ing · Neural Networks· RNN.

1 Introduction

Conformance checking covers different process mining techniques to compare
event logs with process models. The latter can either be normative or an auto-
matically discovered model. Conformance checking techniques can include both
global conformance analysis, typically represented in the form of metrics, as
well as local diagnostics, i.e. pinpointing conformance problems at a more fine-
granular level, either in the log or in the model. Global conformance metrics
typically measure conformance across one of the following quality dimensions:
recall (or fitness), precision, generalisation and simplicity.

In this work, we propose a novel, fully data driven technique that can be used
to measure recall and precision between process models and event logs and thus
works at a global level, although it also has potential to provide insights into
local conformance diagnostics in future work. For now, the technique relies on
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the generation of a model log and comparing this with the given event log. This
comparison is carried out by first generating a so-called “antilog” of either one
of these two logs (the given event log or the model log). The antilog represents
behavior not present in the log and could be generated in multiple ways. In this
work, we investigate the potential of using the simplest of strategies to produce
such an antilog, i.e. traces consisting of events representing activity executions
randomly selected from the activity vocabulary. Once we have such an antilog,
a recurrent neural network is trained to discriminate whether process instances
belong to the (model or event) log or the antilog. Using this network we can
obtain scores for the instances of the other (model or event) log. These scores
represent how well an instance is described by the behavior in the log used for
training.

Our technique has several compelling advantages. First of all, it proposes an
new alternative to the common alignment or replay based algorithms, by utilizing
a recurrent neural network classifier (RNN) model. Second, the RNN models are
intrinsically probabilistic, thus giving a fine-grained analysis of model-log con-
formance. Furthermore, they are able to automatically detect temporal relations
in sequences, making them a fitting tool to assess process instances. Moreover,
by increasing the sample size of the antilog, we can investigate convergence and
stability of metrics. Third, while being a black-box model, the RNN model could
be complemented with visualizations that can pinpoint conformance problems
at a local level, indicating at which timestep (activity) the prediction changes
to antilog. Fourth, our technique allows for incremental updating of the model.
Once the RNN is trained, conformance analysis can happen very fast, e.g. when
checking the precision of different models. Fifth, despite the fact that we rely on
model simulation to obtain a representation of the model behaviour, our tech-
nique is intrinsically more model-agnostic than other techniques which assume a
certain model representation, and can be applied on any model that defines ex-
ecution semantics. Finally, our technique links very well with predictive process
monitoring techniques and has a lot of potential to extend conformance analysis
towards other dimensions than control-flow, i.e. also including the resource and
data dimensions. The use of RNNs in process mining is not new and has been ap-
plied in several areas such as predictive process monitoring [11,22]. However, the
application of RNNs to conformance checking has not been investigated before.

The remainder of our paper is structured as follows: first the technique and
its different components are introduced in Section 2. In Section 3 a set of initial
experiments are detailed, which show our approach’s potential for global confor-
mance analysis. The paper is concluded by a section discussing previous related
work (Section 4) and conclusions and directions for future work in Section 5.

2 RNN-based Conformance Checking

2.1 Overview

Figure 1 presents the key idea behind our proposed technique. RNN based con-
formance checking relies on first “playing-out” the process model to obtain a
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model log. From this point onward the approaches to obtain either precision or
recall differ. If we want to calculate recall, we take the model log and generate its
model antilog. Again, we need to generate the antilog to capture non-conforming
behaviour (not present in the model), in order to train the RNN. A recurrent
neural network classifier is then trained to discriminate whether a certain process
instance comes from the model log or its antilog. In practice this discriminator
uses a sequence of activities as input, and outputs the probability of the instance
belonging to either antilog or log (a value between 0 and 1). If we now use a
new process instance as input in this network, we obtain a score on how well the
model log (and therefore the model) describes it. Using the event log as input
grants us an opportunity to obtain a global recall score. We can either use the
average predicted value over all instances or we can use the fraction of instances
with a score higher than a certain threshold (e.g. 0.5).

When precision of the process model is of interest, the technique starts with
the event log and trains an RNN-classifier by combining it with its event antilog.
By then training the RNN-classifier in a similar fashion and letting it classify
the traces in the model log, we can obtain precision scores for every trace and
thus for the entire model. Because the method as a whole provides labels for the
RNN to train with automatically, it can be regarded as “self-supervising”.

Fig. 1: Overview of the technique.

2.2 Model log generation

For the time being, the method relies on capturing the model behavior by means
of a generated model log. In this work, we opted to “play-out” the model stochas-
tically. This means that not necessarily all possible execution sequences allowed
by the model are captured by the model log. However by making the model log
sizeable enough, this problem can be partially solved. Only in extreme cases (like
e.g. the flower model [9]), where the model entails a very large (infinite) set of
potential process variants, this may lead to lower recall values than imposed by
ground truth. However, we argue that this should not be seen as a major down-
side of our technique because even for models with a very large behavioural size
(thus allowing a large number of variants), we can continually increase the size of
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the model log by simulating more cases. Moreover, because of the probabilistic
nature of the approach, it will be possible to assess stability and convergence of
recall and precision scores when increasing the size of the model log. In addi-
tion, the technique itself is fairly robust to infinite behaviour due to loops, given
that the RNN discriminator in itself has sufficient generalization power to deal
with such constructs. One advantage of using a model log is that the method is
model agnostic and can be applied on any model that defines play-out execution
semantics. For the time being, we have chosen to use the play-out functionality
of the Python Process Mining library PM4PY [4].

2.3 Antilog generation

Multiple methods to obtain the antilog were considered before settling on the
intuitive approach proposed here. That is, experiments demonstrated that a
strategy as straightforward as random generation produced satisfactory results,
which indeed is an appealing proposition towards end-users. More specifically,
we generate process instances with a sequence length uniformly selected between
the minimal and maximal sequence length found in the log it is based on. Each
activity is randomly selected from the activity vocabulary present in both event
log and model log. This choice of vocabulary is not set in stone, as one could
also opt to use only the vocabulary of the log in question. Therefore the model
antilog and the event log antilog are likely to be very similar, only the array
of different potential sizes of the instances might be different. Finally, a check
is performed whether the newly generated antilog instance does not correspond
to a certain instance variant from the log it is based on. In this way another
possible difference between the model antilog and the event log antilog is created.
However if the event log or simulated model log is large enough (i.e. has enough
instances of each possible variant), this check is not strictly necessary and can
be ignored. After all, the classifier will usually have significantly more examples
of this particular instance with the correct (real) label than with the incorrect
(antilog) label in its training set.

Observe that, despite the fact that in the current configuration the two an-
tilogs will typically not differ much, we decided to still make a distinction between
model antilog and event log antilog, given that we investigated some alternative
antilog generation methods, which might lead to more significant differences
between the two types of antilog. For instance, we considered a strategy that
involved the addition of noise to the log. More sophisticated antilog generation
strategies, e.g. relying on artificial negative event generation or generating the
model antilog directly from the model also seem worthwhile. Nonetheless, given
both the satisfactory results detailed below, as well as the fact that the random
model log generation and random antilog generation provide the technique with
a clear probabilistic nature, we argue that this is a proper choice. The antilog
size was taken to be equal to the log it is based on. This was chosen in order to
not introduce class imbalance in the training set of the classifier. If the training
set would be wildly imbalanced, the likelihood of the classifier getting stuck in a
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local minimum whilst training would increase, with the end result of simply pre-
dicting the majority label with a near-certain probability, ultimately resulting
in recall/precision scores of either 0 or 1.

2.4 Recurrent neural network classifier

Recurrent neural networks (RNNs) are a type of artificial neural network specif-
ically designed to handle sequential data. RNNs can be seen as a combination of
multiple feedforward neural networks (one for each time step in the sequence).
The hidden layers (recurrent layers) passing on messages, either one directional
forward or bi-directional back and forth. Due to the vanishing/exploding gradient
problem, simple recurrent neural networks do not handle long term dependen-
cies well. Multiple solutions for this have been proposed, the most popular being
Long Short-term Memory (LSTM) [15] and Gated Recurrent Units (GRU) [5].
Using such networks provides several advantages when there is a reason to in-
corporate these long term dependencies. However in this particular setting, we
noticed that (non-fitting) switching of two subsequent activities was not being
discriminated as nonconforming by the network when using an LSTM, which
might be a problem in a conformance checking context. For example, when “sign
contract” occurs before “check contract”, this did not lead to a large change in
predictions by the network, but could still indicate a problematic conformance
error. Therefore we opted to use a bi-directional simple recurrent layer. The full
architecture can be found in Figure 2.

Fig. 2: Overview of the Recurrent Neural Network discriminator architecture.

The input is a process instance, i.e. a sequence of activities. These activ-
ities are presented one by one to the network, in an integer encoded fashion.
In a first hidden layer this integer vector is converted into an embedding vec-
tor. An embedding is a vector representation, trained to be meaningful in the
sense of constructing a lower-dimensional vector which retains as much of the
original topology of the input space as possible. Embeddings can be trained in
self-supervised fashion on a big corpus (e.g. word2vec [18]) or in a supervised
fashion, added as an extra layer, as done here. The one-hot encoded vectors are
multiplied by a weight matrix with dimensions dimension embedding × activity
vocabulary size. This weight matrix thus contains the embeddings of the different
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activities in each column and is trained while training the entire network. You
could also extract these embeddings for other purposes afterwards. Or use pre-
trained embeddings, trained in a word2vec like fashion, as done by [7], albeit in
different contexts. The activity embeddings are fed to the bi-directional simple
RNN layer. The output of this layer is then send through a dense layer which
predicts the label of the sequence. This output is a number between 0 and 1 and
can be interpreted as a probability. This label is taken from the output of the
last time step in the sequence (the final activity), but in theory the label could
be predicted at each time step. This could provide extra insights into at which
specific activity the nonconforming behavior takes place and could provide inter-
esting visualizations. For now, however, the focus lies on predicting one overall
label, i.e. whether a trace stems from a log or its antilog. In this research setting,
the neural network implementation was executed by means of the the Python
library Keras 3 and sequences were padded to the maximal length, such that all
eventual input sequences had the same size. The dimension of the embedding
layer was set to 4 and the dimension of the recurrent layer was set to 8. The
RNN uses a sigmoid activation function and was trained to optimize the binary
cross entropy loss using RmsProp [24] for 40 epochs with a minibatch size of
64. In order to counteract overfitting a dropout of 0.5 was added between the
recurrent layer and the dense output layer.

3 Experimental Evaluation

In this section the newly introduced technique will be tested4. In this experiment,
we focus on global recall and precision calculation. Hereto, we use the event log
in Table 1 together with the models 1-10 in Figure 3, obtained from van Dongen
et al. [9]. This set of models was supplemented with model 11, a model with low
recall and high precision. We also use a model discovered from the event log by
the Alpha miner [25] and 3 models discovered by the inductive miner [17], with
the noise parameter set to 0, 0.5 and 1 respectively. These models can also be
found in Figure 3. The discovery algorithms were used as implemented in the
ProM framework [10].

Table 1: The test log used for the experimental setup [9].

Instance #
〈A,B,D,E, I〉 1207

〈A,C,D,G,H, F, I〉 145
〈A,C,G,D,H, F, I〉 56
〈A,C,H,D, F, I〉 23
〈A,C,D,H, F, I〉 28

3 https://keras.io
4 The implementation of the technique, tests and the synthetic

data used can be found on https://github.com/jaripeeperkorn/

Supervised-Conformance-Checking-using-Recurrent-Neural-Network-Classifiers

https://keras.io
https://github.com/jaripeeperkorn/Supervised-Conformance-Checking-using-Recurrent-Neural-Network-Classifiers
https://github.com/jaripeeperkorn/Supervised-Conformance-Checking-using-Recurrent-Neural-Network-Classifiers
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For each of the models we calculate the global fitness and precision, both by
averaging the probability values as well as by counting the fraction of instances
with a probability above the 0.5 threshold. This was done using the setting de-
scribed above. We each time generated a model log with 1500 process instances,
which is not sufficient to capture all possible behavior in some of the extreme
models (e.g. the flower model). In most cases however, this was more than suffi-
cient. The technique was performed 10 times for each model, and the median is
taken to be the eventual value as well as the standard error σ/

√
10. These values

are compered with different methods from literature: alignment based recall and
precision [1], behavioral recall [13] and precision [27] and Markovian recall and
precision with k = 3 [3]. We used the implementations in CoBeFra [26] for the
alignment and behavioral based metrics. The results can be found in Table 2.

Table 2: Resulting recall and precision values.

Model Recall Precision
Prob. Count [1] [13] [3] Prob. Count [1] [27] [3]

1 1.00± 0.00 1.00± 0.00 1.00 1.00 1.00 1.00± 0.04 1.00± 0.03 0.98 1.00 0.88
2 0.83± 0.00 0.83± 0.00 0.92 0.81 0.23 1.00± 0.00 1.00± 0.00 1.00 0.89 1.00
3 0.79± 0.01 1.00± 0.00 1.00 1.00 1.00 0.00± 0.00 0.00± 0.00 0.14 0.12 0.00
4 1.00± 0.00 1.00± 0.00 1.00 0.99 1.00 1.00± 0.01 1.00± 0.00 1.00 0.94 1.00
5 1.00± 0.00 1.00± 0.05 1.00 1.00 1.00 0.91± 0.02 0.89± 0.02 0.95 0.95 0.56
6 1.00± 0.00 1.00± 0.00 1.00 1.00 1.00 0.77± 0.01 0.77± 0.02 0.95 0.87 0.18
7 1.00± 0.00 1.00± 0.00 1.00 1.00 1.00 0.58± 0.04 0.60± 0.06 0.80 0.72 0.35
8 0.52± 0.02 0.52± 0.14 0.74 1.00 1.00 0.00± 0.00 0.00± 0.00 0.34 0.16 0.01
9 1.00± 0.00 1.00± 0.00 1.00 1.00 — 0.50± 0.01 0.50± 0.01 0.84 0.60 —
10 0.43± 0.11 0.45± 0.15 0.62 0.59 0.09 0.00± 0.00 0.00± 0.00 0.89 0.19 0.06
11 0.15± 0.01 0.17± 0.02 0.62 0.35 0.64 1.00± 0.01 1.00± 0.00 1.00 0.36 1.00

Alpha 0.96± 0.00 0.97± 0.00 1.00 0.99 0.77 0.73± 0.01 0.72± 0.01 0.96 0.92 0.38
Ind. 0 1.00± 0.00 1.00± 0.00 1.00 1.00 1.00 0.86± 0.04 0.89± 0.05 0.72 0.59 0.42

Ind. 0.5 1.00± 0.00 1.00± 0.00 1.00 0.99 0.77 0.84± 0.03 0.86± 0.04 0.79 0.69 0.44
Ind. 1 0.18± 0.11 0.17± 0.12 0.86 0.84 0.68 0.82± 0.06 0.81± 0.07 0.87 0.64 0.48

Our new technique approximately agrees with existing metrics from the lit-
erature for most of the models. The recall values obtained for model 2 can be
explained by looking at the fraction of instances in the event log correspond-
ing to the most frequent trace 1207/1459 ≈ 0.83. Similarly, for model 11, the
fraction of the least frequent traces in the event log (56 + 23 + 28)/1459 ≈ 0.07
can be obtained. The recall score provided by the RNN is slightly higher, but
not as high as the scores provided by alignment or Markovian based recall. For
both model 2 and model 11 the precision is 1, as it should be. Noticeable differ-
ences in recall and/or precision appear in the special cases, i.e. model 3 (flower),
model 8 (all parallel) and model 10 (round-robin). Whereas the extremely low
precision values can be seen as correct, the incorrect low recall values can be
attributed to an (incomplete) random model log generation. Due to the infinite
(for the flower model) or high number of possible traces that can be generated
by these models, the chance that not all or even few traces present in the event
log are not simulated is high. This leads to incorrectly low recall values. This
might be solvable by generating the model log in a different way (e.g. complete
log generation with a maximum on the number of times a particular marking
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can be seen). However, for these overly general models, simply generating a big-
ger model log will not work, as the random antilog grows simultaneously (we
chose to keep them the same size). The chance for a flower model to generate
something close to the instances in the event log, is similar to the chance of the
random antilog to generate it. In a way, an extra punishment on the recall value
is given to overly general and imprecise models. It however also clear that each
of the other method from literature have different examples they cannot handle
properly. Another important difference in recall values can be seen in the model
discovered by the inductive miner with noise parameter set to 1. Our newly pro-
posed technique outputs a recall value significantly lower than the ones obtained
by the methods from the literature. When looking at the model, you can actually
see that it is not able to replay the most frequent instance from the event log
〈A,B,D,E, I〉, but is able to replay the other ones. The value obtained by our
technique corresponds approximately with the fraction of the replayable traces
in the event log (145 + 56 + 23 + 28)/1459 ≈ 0.17, while the other techniques
return values significantly higher. Apart from the extreme case in model 8, the
method using the average of the probabilities and the method using the counts
do not differ much.

We further investigated the convergence of the recall and precision values
with increasing model log size (and therefore with increasing model antilog size as
well). It was observed that convergence happens at a significantly higher number
of instances than the amount of different variants the model can produce. This
indicates that not necessarily the model log generation, but rather the random
antilog generation requires enough examples in order to obtain a stable result.
Because the RNN outputs the probability of an instance belonging to either the
event log or the antilog, we can also show a probability distribution over all
instances. This might provide end-users with a valuable visualisation. We also
manually confirmed the method was able to pick up on small (unwanted) change.
There is off course a trade-off. If it is necessary that small changes (e.g. switch
“sign contract” before “check contract”) not yet seen, result in a nonconforming
label, having a RNN which is trained to generalize its predictions maximally,
might provide an issue in combination with the current antilog generation. By
reducing possible overfitting measures (e.g. dropout between layers) the shape
of the distribution becomes more bimodal with two peaks (at 0 and 1) and
no or little mass in between. On the other hand, if small changes are not a
problem and we are more interested in the distribution of the fitness values,
it is necessary to make sure the neural network is still generalizing enough. If
you already know which specific behavior is certainly not desired, you can add
this behavior manually to the antilog. This means adding multiple (different)
traces containing the unwanted behavior to the antilog. The time it takes to run
the method (precision or recall) with two event logs (and one antilog) of 1500
instances (size 20 activities, vocabulary size of 10) one time (including) training
is around 9s, as performed on an Intel(R) Core(TM) i7-9850h CPU @ 2.60ghz.
If the RNN is already trained and you would only need to put through one log
this reduces to 0.2s.
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4 Related work

One of the earliest research on Conformance Checking can be found in Cook
et al. (1999) [6]. Multiple techniques for obtaining recall or precision have been
proposed ever since. One example of an early precision metric was introduced
by Greco et al. (2006) [14] which calculates a “set difference”, between a set of
traces representing the log’s behavior and one representing the model’s behav-
ior. Other noteworthy earlier contributions are proper completion, token based
sequence replay and the advanced behavioral appropriateness [20]. Behavioral
recall (using a percentage of correctly classified positive events) and behavioral
specificity (replaying the sequences and taking the percentage of correctly clas-
sified negative events) were introduced by Goedertier et al. (2009) [13] and was
later supplemented with a similar method using the amount of “false positives”
(behavior allowed by model, but labeled a negative event based on the log) [8]
and by the behavioral precision [27]. Another method using behavioral profile
based metrics, based on different constraints a process model can impose on a
log, was introduced by Weidlich et al. (2011) [28]. Another metric is ETC preci-
sion which uses log prefix automatons and the number of “escaping” edges [19].
This was later altered in projected conformance checking (PCC), better scaled
to real-life logs [16]. A lot of focus has been on the (average) alignment based
trace recall and precision approach introduced in [1], supplemented by the one
align precision and best align precision [2]. Van Dongen et al. (2016) proposed
the use of “anti-alignments” to obtain a model’s precision [9]. Recently promis-
ing work comparing Markovian abstractions of both event log and model has
been shown as a potential efficient alternative to alignments based methods [3].
In recent years different axioms were proposed as well, describing (un)wanted
behavior that conformance checking metrics should (not) adhere to [21].

The method introduced in this work draws some resemblance to Classifier-
Adjusted Density Estimation for Anomaly Detection and One-Class Classifica-
tion (or CADE) [12], which is an anomaly detection method that uses a clas-
sifier trained on discriminating between real data and synthetic data generated
uniformly over all features. RNN’s have earlier been used in predictive process
monitoring [11, 22]. Recent work in predictive monitoring has also introduced
the use of Generative Adverserial Nets [23]: a self-supervising machine learn-
ing technique based on training a discriminator and a generator simultaneously,
which draws some similarities to the technique introduced here.

5 Conclusion and Future Work

We have presented a new technique to obtain recall and precision of event logs
and process models. The technique was tested on a small example log and models
to show its potential for global conformance analysis. In future work, it should
be interesting to hold our new technique against the recently proposed confor-
mance checking axioms [21]. However, due to the intrinsic probabilistic nature
of the technique, doing this theoretically might be hard and require empirical
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backing. Another interesting avenue would be to directly rely on the given pro-
cess model, omitting the model log generation step, although this would require
serious alterations to the technique. A less drastic improvement could be found
in a more sophisticated antilog generation, though the simplicity combined with
good results obtained by the current approach is nonetheless appealing. Another
method could e.g. use negative events [8,13,27] or other smart usage of different
data features. Next, it could be interesting to use the output at each time step
(see Figure 2) for explanatory purposes. Since we could then inspect at which
activity exactly the model starts to classify the instance as being nonconform-
ing. Preliminary results show that such an approach is viable. Finally, since the
model could in theory be extended to include additional data attributes (e.g. the
resource or other perspectives), including this in future implementations might
provide us with additional advantages compared to competitive conformance
checking techniques.
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research project, an EC H2020 MSCA RISE project with Grant agreement No.
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Fig. 3: Models used for the experimental setup.
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