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Abstract. Many process mining tools produce directly-follows graphs
(DFG) as visual representations of event logs. While the “directly fol-
lows” relation is a good starting point for visualizations, there are sim-
ple phenomena it does not capture, for instance, when whether or not
an event directly follows another event depends on the event directly
preceding it. We call this a history dependency. This paper presents
an empirical study of preferences for visualizing history dependencies:
plain DFGs and two enhanced variants of DFGs (with additional arcs
or rectangles) are evaluated. Our empirical study provides strong sup-
port for making an effort (to discover and) to explicitly visualize history
dependencies. A ProM plug-in generating such explicit visualization is
described in this paper.

Keywords: directly-follows graph · process visualization · process discovery ·
history dependency · empirical study.

1 Introduction

Event log files are used as input to any process mining algorithm aiming to
discover an as-is process model, to analyze processes or to identify bottlenecks.
To reduce inappropriate conclusions from the discovered process model, it is
essential that this model reflects the reality found in an event log as best as it
can. Mostly, available commercial process mining tools produce a visualization
of a directly-follows graph (DFG) as a representation of event logs. While the
“directly follows” relation is a good starting point for a visualization, there are
simple phenomena it does not capture, for instance, when whether or not an
event directly follows another event depends on the event directly preceding it.
Fig. 1 illustrates this phenomenon in terms of traces.

According to Fig. 1 a) the execution of activity D right after C is only allowed
when A was executed directly before C. When activity B was executed directly
before C, then only E may directly follow, but D must not. We call this event de-
pendency a history dependency (more precisely, a history-1 dependency). Fig. 1
b) shows a Petri net modeling the dependencies exactly.
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Fig. 1: a) example of a history dependency; b) discovered Petri net; c) discovered
DFG; d) proposed visualization

A process mining algorithm based on the directly follows relation would pro-
duce the DFG in Fig. 1 c). This DFG allows behavior that is not reflected
in reality, namely the trace 〈B,C,D〉. Although limitations of DFGs have been
demonstrated [9], the graphical visualization as DFG is still a common practice
for available commercial process mining tools. The motivation behind our re-
search, therefore, is not to resort to a completely different type of visualization,
but rather to study visual enhancements of DFGs being suitable to visualize
history dependencies. For the example given in Fig. 1 a), we propose the visu-
alization in Fig. 1 d). Another example is given in Fig. 2. Mining an event log
as given in Fig. 2 a) leads to the DFG in Fig. 2 c), which has an unintended
cycle; we propose the visualization in Fig. 2 d), which reflects reality exactly. A
process model exactly modeling the event log is given in Fig. 2 b).

Fig. 2: a) a second example of a history dependency; b) BPMN model; c) dis-
covered DFG; d) proposed visualization
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To learn more about history dependencies and enhancements of the DFG, we
conducted a user study. We compared plain DFGs to two enhanced visualiza-
tions, one with additional arcs (AA) and another one with additional rectangles
(AR). Our findings show strong support for enhancing DFGs to visualize history
dependencies. Thus, our finding does not correspond to common practical im-
plementations (where history dependencies are not explicitly visualized); this is
why we developed a ProM plug-in that produces enhanced DFGs, more precisely,
it produces AR visualizations.

This paper is structured as follows. The next section compares our work with
related works. Section 3 discusses, beside the plain DFG, visualization variants
for history dependencies. Section 4 describes the design of a study to provide
evidence about the visualization strategies for history dependency. The results
of the study are discussed in Sections 5 and 6. The ProM plug-in implementation
is presented in Section 7. The paper concludes with a summary and an outlook.

2 Related Work

Process discovery algorithms generally distinguish between two types of depen-
dencies [10]: explicit and implicit ones. An explicit dependency, which is also
called direct or causal dependency [1], exists when an activity is directly followed
by another activity in a considerable number of cases. An implicit dependency
refers to various types of indirect (causal) relationships between activities, for
instance, that an activity is eventually followed by another activity in a consid-
erable number of cases. Dependency measures are used to determine whether or
not and which kind of dependency is present. A history dependency in our sense
takes into account causal dependencies that are not only concerned with two
consecutive activities but a small number of consecutive activities [8]. Process
models visualizing history dependency prevent, in some case, unintended cycles
as demonstrated in Fig. 2 and thus overcome a limitation of the DFG discussed
in [9].

We subsume our approach to techniques explicitly visualizing history- depen-
dent information as in [5, 4]. Compared to these approaches we do not introduce
a new visualization technique nor label the process model with additional in-
formation but rather enhance the DFG, which is commonly used in commercial
process mining tools, aiming to reflect the reality found in an event log better
than a plain DFG.

3 Visualization Techniques

To understand the usefulness of the Directly-Follows Graph in terms of visual-
izing history dependencies we compared it with two other visualization variants
as discussed in this section. The visualization techniques lay the foundation
for the empirical validation of visualization preferences for history dependencies
presented in Section 4.
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Fig. 3: Examples for a) DFG-based visualization, b) Visualization Additional
Rectangle c) Visualization Additional Arc

3.1 Visualization Directly-Follows Graph

The DFG is widely used to visualize behavior between process activities. It gives
information on a similar level of abstraction as the process modeling notations
BPMN, EPK or Petri nets. Usually, commercial process mining tools also attach
time and frequency based performance measures on the arcs for process moni-
toring reasons. Although the semantics of the DFG is easily understandable, the
DFG does not represent a precise process model since it allows more behavior
than has actually been recorded in the event log and can reasonably be expected
as has shown in the introductory example. In this way, a history dependency is
wrongly visualized and is even hardly spotted, which may lead to inappropriate
conclusions inferred from the DFG. The following two visualization variants aim
to overcome this issue.

3.2 Visualization Additional Rectangle

To visualize history dependency the plain DFG is enhanced with an additional
rectangle. We insert to the activity routing the history dependency. We call
this visualization technique “Additional Rectangle”, see Fig. 3 b) for an exam-
ple. Additional Rectangle (AR) is inspired by hyperedges, a well-known concept
from graph theory, see [2]. Incoming and outgoing arcs of the additional empty
rectangle indicate the allowed behavior between two activities. Trace replays
on this model would be: 〈A,C,D〉, 〈A,C,E〉, 〈B,C,E〉, which corresponds to the
allowed behavior in Fig. 1 a). The trace 〈B,C,D〉 cannot be replayed by this
process model due to a missing empty rectangle at activity C. A more complex
visualization of AR for large process models can be seen in 4 b).

3.3 Visualization Additional Arc

A second technique to visualize history dependencies is “Additional Arc” (AA),
see Fig. 3 c). Here, the plain DFG is enhanced with dashed arcs. This visualiza-
tion, like AR, explicitly illustrates a history dependency. The semantics of the
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dashed arc is “activity D can only be executed if activity A has been executed
previously”. Thus, the process model visualized through AA also does not allow
to replay the trace 〈B,C,D〉 on the model. A complex example process model is
shown in 4 a) visualizing a model with a total of seven history dependencies.

a) b)

Fig. 4: Examples for visualizations a) Additional Arc b) Additional Rectangle
for large process models.

4 Design Setting

To evaluate whether the proposed visualizations are suited to recognize history
dependencies, a questionnaire was designed. The main focus of the study was
to investigate the visualization preferences of the three visualization techniques
presented in the previous section. Therefore, a web-based questionnaire was set
up. Participants were free to answer the questions and could withdraw the com-
pletion of the questionnaire at any time and collection of data was anonymous.
The following section describes the design of the questionnaire.

Objects. The objects evaluated by each participant were a set of traces
and a total of eleven process models. Five of the process models were visualized
according to the AR visualization, five with the AA visualization and one as
a Directly-Follows Graph. Small process models (see Fig. 3) had six activities
and one history-1 dependency. Large process models (see Fig. 4) were designed
through ten activities having seven history dependencies including history-3 de-
pendencies.

Response variable. The response variable in our study is the level of under-
standing that the respondents displayed with respect to a visualization technique
recognizing history dependencies. Understandability is measured as follows:
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– the perceived ease of understanding (PEOU),

– preference between the visualization techniques,

– the number of correct traces spotted for a visualization technique,

– degree of agreement for comprehension questions

Instrumentation. The questionnaire was constructed as follows. After a
motivation in history dependency, we asked the participants to complete for
each visualization technique a task and to answer comprehension questions. The
semantics of each visualization technique was not formally introduced. The task
was to evaluate against a set of traces whether traces can be replayed by the
process model. We showed 4 traces for each small process model and 21 traces
for each large process model. The description of a task was ”Evaluate for each
trace if the trace can be replayed by the process model. Please tick the corre-
sponding box.”. After having completed this task, we asked the participants to
rank (on a 5 point Likert scale) visualization preferences to represent history
dependencies and to rank the visualization techniques based on their ability to
represent history dependencies in a process model. In the second part of the
questionnaire the participants had to complete two further tasks for the visu-
alization techniques AA and AR. The first task was to choose between true or
false statements. We provided for each of the two visualization techniques the
following statements ”Please consider the three process models and choose if one
of these models describes the following behavior according to the Additional Arc
visualization The model is able to replay the traces: 〈A,D,E〉, 〈A,D,F〉, 〈B,D,F〉,
〈C,D,F〉. and is not able to replay 〈B,D,E〉 and 〈C,D,E〉 Please select the correct
representation of the wanted behavior” also providing the option ”none of the
shown models describes the desired behaviour.”. Subsequently, the participants
had to complete tasks for the visualizations AA and AR for large process models
and to rank their individual preferences for both visualization techniques.

Subjects. The survey was conducted in July 2020. The link to the survey was
sent to the participants of the ”Advanced Process Mining”3 course at the Kiel
University as well as a number of experts across different European universities.

Data collection. Along with the questionnaire, we asked the participants
about the amount of experience they have in the fields of process mining and
business process management. Furthermore, we asked whether they (practically)
worked with process mining and if they understood the motivation behind his-
tory dependency that we presented at the beginning of the questionnaire.

5 Evaluation Results

Finally, the questionnaire was answered by 13 persons. 62% of the respondents
had more than one year of experience in process mining and 38% had more than
three years of experience. All participants used process mining in research. One

3 Students of the ”Advanced Process Mining” course also attended the course ”Process
Mining” in the winter term and thus had advanced process mining knowledge.
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person worked with process mining in industry projects. The average time to
complete the questionnaire was 41 minutes.

The results for visualization preferences were analyzed with respect to fre-
quency distribution. Table 1 shows the statistical results for each preference,
its answer options, the frequency in numbers per option, the frequency (%),
and the cumulative frequency (%) for each question. Cumulative frequency is
determined by aggregating agreement (strong agree, agree) and disagreement
(disagree, strongly disagree) with the preference. Table 1 summarizes the statis-
tical results. The results investigate the PEOU measure for each visualization
technique while Table 2 shows the preference between the visualization tech-
niques and an order between the three visualization techniques with respect to
understandability. According to this result DFG is ranked in average 2.85 out of
3 with standard deviation of 0.36 meaning that it is less understandable as repre-
sentation for history dependency. The Directly-Follows Graph is being perceived
as not helpful to understand history dependencies. Visualization preferences for
DFG received very low agreements (8% and 15%). In the ranking of individual
preferences the DFG received the last position.

For small process models a slight preference exists for AR against AA visu-
alization. 69% agreed that the AR visualization helped them better to recognize
history dependencies, while 46% voted for AA as first choice. Related to individ-
ual visualization preferences AR was in average ranked (1.54 out of 3) compared
to 1.62 for AA. The high standard deviation, however, might implicate that the
participants are undecided.

A contrary individual preference is observed for large process models. The
statement “Additional Rectangle helped better than Additional Arc to recognize
implicit dependency“ received an 85% approval, while the contrary statement
only received a 23% approval. The preference for AR for large process models is
also confirmed by the results in Table 2. The AR visualization was ranked 1.15
(out of 3), while the preference for AA declined to 1.85. So there is a significant
preference for Additional Rectangle visualization over Additional Arc for larger
process models when many implicit dependencies exist.

The results of user tasks (correct traces spotted for trace replay) are shown
in Table 3. The tasks were not evaluated with respect to the correctness of an
answer since no explanation of the semantics of each visualization technique
was introduced to the users. Instead we compared the visualization techniques
according to the overall consensus for each selection.

For each task multiple measures were calculated. The first three measures
point to the consensus on a decision. This was measured by the relative amount
of participants with identical answers. A consensus of 100% means that all par-
ticipants made the identical decision, while a consensus of 50% means that half
of the participants had the opinion that a trace can be replayed by the model
while the other half had the opposite opinion. As for the trace replay tasks mul-
tiple decisions existed we determined the average [AVG] consensus of all traces
within a task, the corresponding standard deviation [STD] and its minimum
[MIN] which is the consensus on the most controverse trace selection.



8 Wetzel, Koschmider, Wilke

Preference Options Freq Freq. (%) Cum. Freq. (%)

The visualization Directly-Follows Graph
helped me better to recognize the implicit
dependency over the visualization
Additional Rectangle

s. agree 1 8 %
8 %

agree 0 0 %
undecided 4 31 %

disagree 3 23 %
62 %

s. disagree 5 38 %

The visualization Directly-Follows Graph
helped me better to recognize the implicit
dependency over the visualization
Additional Arc

s. agree 2 15 %
15 %

agree 0 0 %
undecided 3 23 %

disagree 2 15 %
62 %

s. disagree 6 46 %

The visualization Additional Rectangle
helped me better to recognize the implicit
dependency over the visualization
Directly-Follows Graph

s. agree 5 38 %
69 %

agree 4 31 %
undecided 2 15 %

disagree 1 8 %
15 %

s. disagree 1 8 %

The visualization Additional Rectangle
helped me better to recognize the implicit
dependency over the visualization
Additional Arc

s. agree 3 23 %
62 %

agree 5 38 %
undecided 2 15 %

disagree 1 8 %
23 %

s. disagree 2 15 %

The visualization Additional Arc helped
me better to recognize the implicit
dependency over the visualization
Directly-Follow Graph

s. agree 7 54 %
85 %

agree 4 31 %
undecided 1 8 %

disagree 1 8 %
8 %

s. disagree 0 0 %

The visualization Additional Arc helped
me better to recognize the implicit
dependency over the visualization
Additional Rectangle

s. agree 1 8 %
46 %

agree 5 38 %
undecided 1 8 %

disagree 5 38 %
46 %

s. disagree 1 8 %

The visualization Additional Rectangle
helped me better to recognize the implicit
dependency over the visualization
Additional Arc in large process models

s. agree 6 46 %
85 %

agree 5 38 %
undecided 0 0 %

disagree 1 8 %
15 %

s. disagree 1 8 %

The visualization Additional Arc helped
me better to recognize the implicit
dependency over the visualization
Additional Rectangle in large process
models

s. agree 1 8 %
23 %

agree 2 15 %
undecided 1 8 %

disagree 5 38 %
69 %

s. disagree 4 31 %

Table 1: Results of preferences
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Rank (AVG) Rank (SD)

Additional Rectangle 1.54 0.63
Additional Arc 1.62 0.62
Directly-Follows Graph 2.85 0.36

Additional Rectangle for large models 1.15 0.36
Additional Arc for large models 1.85 0.36

Table 2: Results of ranking the proposed visualizations

The aggregated results show a consensus of 85% vs. 92% on average. Recall
that for small process models users had to evaluate four trace replays. A value
of 92% means that almost all participants had the same understanding of the
AR visualization. Note, that it was a binary decision so the expected value of
a random distribution would have been 50%. But not only the average overall
decisions were better for the Rectangle visualization. The worst consensus was
between 77% to 69% and also both calculated standard deviation metrics are
smaller for AR. When evaluating trace replay for large process models (i.e.,
”Please rate your visualization preferences to represent implicit dependencies in
large process models”), the consensus declines for both visualization techniques.
But still, Additional Rectangle with a consensus of 90% is superior to Additional
Arc. The last task (i.e., ”Please rank the presented visualization based on their
ability to represent implicit dependencies in a process model”) shows again a
clear preference for AR (ten out of 13 choose it), while AA was ranked the
second with 54% of the participants.

Semantic Task name Cons.[AVG] Cons.[STD] Cons.[MIN]

DFG Trace verification (small example) 100% 0% 100%

AR
Trace verification (small example) 92% 9% 77%
Trace verification (large example) 90% 8% 69%
Choose correct Model 77%

AA
Trace verification (small example) 85% 15% 69%
Trace verification (large example) 77% 17% 54%
Choose correct Model 54%

Table 3: Aggregated Results of the tasks



10 Wetzel, Koschmider, Wilke

6 Discussion

Interpretation: The empirical study provides strong support for another visu-
alization for history dependencies than the Directly-Follows Graph. Additional
Rectangle, as well as Additional Arc, are better suited to visualize history de-
pendencies. This finding does not directly correspond to common practical im-
plementations. The DFG-based visualization, which is the common practice for
available commercial process discovery tools, does not explicitly visualize history
dependencies. Our statistical results show that AR and AA are easily under-
standable for users for small process models, while a strong support for AR was
observed for large process models. Therefore, Additional Rectangle is a suitable
alternative to current visualizations.

Implications: the design of a visual notation is a challenging task [7]. It re-
quires a balance between symbol deficit (i.e., no constructs representing a graph-
ical symbol), symbol overload (i.e., same graphical symbol for different represen-
tations), symbol redundancy (i.e., alternative graphical symbols for same repre-
sentation) and symbol excess (i.e., showing all constructs on a diagram). The
rejection of a DFG-based visualization is in line with the postulation of symbol
deficit. When no construct is used to represent a graphical symbol then un-
derstandability decreases. Process discovery tools should implement an explicit
visualization for history dependencies.

Limitations: The similar preference for Additional Rectangle vs. Additional
Arc for small process models might be explained due to a weakness of under-
standing the semantics of the AA visualization. There are two contrary ways
to interpret the dashed arc in 3 c). Either it is understood as “If A has been
executed then it must be followed by D” or it can mean “activity D can only be
executed if activity A has been executed before”. Apparently, four out of twelve
participants have intuitively interpreted the arc in the first way.

7 Implementation as ProM Plugin

In response to the evaluation results (and also the limitation of AA visualiza-
tion discussed previously) we implemented a ProM plug-in, which experiments
with visualizing history dependencies by enhancing the nodes in a DFG with
additional rectangles. An overview of the components of the plug-in, called De-
pendent Directly Follows Model Miner (DDFM Miner), is shown in Figure 5.
The plug-in carries out three sequential steps.

Step 1. The plain DFG is mined from an event log in XES format using
the “DirectlyFollowsModelMiner” plugin [6], which produces a directly-follows
matrix.

Step 2. History dependencies are being identified. For this purpose, the al-
gorithm takes as input the directly-follows matrix from Step 1 and compares it
with a Petri net manually mined from the same event log using a suited ProM
plug-in miner (see “Preparation” in Fig. 5). The DDFM Miner then analyses
every transition-place-transition triplet in the Petri net and determines whether
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Fig. 5: a) Steps of the DDFM Miner and b) its output

this relation is already in the directly-follows matrix. If this is not the case, a
history dependency is added to the history-dependency matrix.

Step 3. A visualizer plug-in relying on the Graphviz environment [3] translates
the two matrices into a graphical representation. This includes four steps:

1. Calculate all dependent paths that connect two history dependent activities.
2. Pre-process node names to create the additional rectangles with Graphviz.
3. Generate nodes and directly-follows edges.
4. Iterate through dependent paths to remove directly-follows edges and add

dependency edges.

Fig. 5 b) shows the final result of the DDFM miner.

8 Summary and Outlook

The simple understandablity of the DFG might be one reason for its high pop-
ularity. With regard to history dependencies, however, the DFG-based visual-
ization fails. The objective of this work was to study how to visualize history
dependencies. For this purpose, we compared the plain DFG with visualization
variants in a user study. The results of the study provide strong support to
enhance the plain DFG with additional rectangles to visualize history depen-
dencies.

In response to our finding, the DDFM miner has been implemented, but
this is only a first step. Future tasks are: (1) to evaluate the DDFM miner on
large event logs, (2) to visualize history dependencies for multiple interfering
dependent paths, as, for instance, present in Fig. 4: consider 〈C,G,H, J〉 and
〈B,D,E,H, I〉, (3) To enhance the semantics of AR visualization (see Appendix)
with quantitative aspects such as frequency and time since our definition of
history dependency is a “discrete” one.
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A Rigorous Definitions

Let A be a finite set of activities without B and �. A trace is a finite sequence
BA0 . . . An� which satisfies Ai ∈ A for every i ≤ n. An event log is a finite
non-empty set of traces.

A directly-follows graph with multiplicities (DFG+) consists of a finite set V
of vertices, a finite set E ⊆ V × V of edges, and a labeling function λ : V →
A ∪ {B,�} such that V together with E is a directed acyclic graph (DAG),
there is exactly one vertex labeled B, and this vertex is the only vertex with no
incoming edge, there is exactly one vertex labeled �, and this vertex is the only
vertex with no outgoing edge. A DFG+ represents the event log which consists
of the labelings of all paths through it that are traces.

A DFG+ is a directly-follows graph (DFG) when every event is the label of
at most one vertex. A DFG+ is reduced if every vertex is on some path from the
vertex labeled B to the vertex labeled � and there are no two distinct vertices
with the same set of successor vertices.
Fact For every event log there is, up to isomorphism, exactly one reduced DFG+
that represents it. Such a DFG+ is called canonical for the event log.
Definition Let D be a canonical DFG+ for an event log. 1. The event log is
history-free if D is a DFG.

2. Let k be a non-negative integer and A ∈ A. There is a k-conflict for A if
there are paths v0v1 . . . vk and w0w1 . . . wk in D such that vk 6= wk, λ(vi) = λ(wi)
for all i < k, and A = λ(vk) = λ(wk). There is a k-history dependency (k > 0)
for A if there are no k-conflicts for it, but a (k − 1)-conflict.
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Abstract. Process mining supports business process management with
operational insights extracted from event logs. A key challenge for process
mining is that operational processes in production and logistics often
include batching and unbatching, e.g., to delivery several packages using
one truck tour. Such n:m relations blur the notion of a process instance
and make the causality between events difficult to trace. In this paper,
we address this research problem by introducing causal event models
that capture batching behavior accurately. To this end, we construct
conflict-free prime event structures for event instances of the event log,
and devise various analysis techniques on top of them. We implemented
the techniques in a tool and run in real data of a manufacturing company
with various 1:n and n:1 relations in their production process showing
the potential of our approach.

Keywords: Process mining · Business process modeling · Batching ·
Causality.

1 Introduction

Business Process Management (BPM) comprises the various management activi-
ties that help organizations to discover, analyse, implement and monitor their
processes [10]. Recently, BPM has become increasingly evidence-based thanks
to advancements of process mining [1]. The availability of event log data from
enterprise systems for various business processes is one of the key drivers of these
developments as much as the commercial tool support.

Various algorithms have been proposed that support automatic process dis-
covery, conformance checking, enhancement, or analysis of variants [1,10]. One
aspect of specific interest to the process analyst is the batching behavior of pro-
cesses, i.e. the merge of different objects either within the same case or between
different cases. This practice contributes to both, more cost-efficient processing
as well as delays. In order to grasp the batching behavior precisely, the knowledge
about causality between the events is necessary. Without this knowledge spurious
batches may occur.
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In this paper, we address this research problem by introducing causal event
models that capture batching behavior accurately. To this end, we construct
conflict-free prime event structures, inspired by [3], for process instances stored
in event logs, before devising various analysis techniques on top of them. Our use
case demonstrates the benefits of our technique for the case of a manufacturing
company with various 1:n and n:1 relations in their production process.

The rest of the paper is structured as follows. Section 2 discusses a motivational
scenario for our work. Subsequently, Section 3 presents prior work related to our
research problem with a focus on n:m relations and batch in business processes.
Section 4 presents the conceptual foundations of our technique. Section 5 describes
findings from applying our technique for a production process and discusses the
lessons learned. Finally, Section 6 concludes the paper outlining future research.

2 Motivational Scenario

To motivate the presented work, we refer to an order-to-cash process example of
one of our industry partners called Pastamaker (a pseudonym). Pastamaker’s
business is producing and delivering pasta to major supermarket chains in Austria.
Their order-to-cash process is triggered by direct orders of a supermarket. These
orders contain a list of items, where each of these items needs to be picked
separately from the warehouse. In the next step, each item is packaged and sent
as one or multiple deliveries. Each order generates an invoice that is settled and
closed by a payment. In addition, packaging and delivering steps have sub-steps
that are creating packaging notes and group delivery information.

Pastamaker uses batching at various stages of its production process, most
importantly for bundling deliveries. For instance, one order can trigger different
deliveries, and one delivery can include items from different orders. Such delivery
batches are of central importance for keeping the operational costs of the process
low. To further optimize the batching of the orders, Pastamaker would like to
analyze them. In particular, Pastamaker would like to get information, like how
many batching events took place, what events caused batches, or which steps are
bottlenecks or caused delays.

3 Related Work

Perspectives on this problem have been discussed in two main streams of research:
i) n:m relations in business processes; and ii) batching, which includes modeling
batches and extracting knowledge about batches from event logs.

For what concerns stream i), various works consider the problem of bundlings
and unbundlings as well as multiple instance activities for business processes.
Gerke et al. construct end-to-end case identifiers for RFID-based logistic processes
by propagating order identifiers to subsequent and subordinate events [15,16].
Approaches by Weber et al. [26] and by Conforti et al. [7] present algorithms
that discover process models with multiple instance activities. Lu et al. [21]
present an approach that maintains complex event relations based on database
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schemas to construct artifact-centric models with causal relations. Berti and van
der Aalst [6] provide support for exploring event logs stored in databases from
multiple viewpoints. Esser and Fahland [11,12] use labeled property graphs to
capture the concept of one event being part of multiple cases. González López
de Murillas et al. [24] identify interesting case notions from databases, while
heuristics for finding suitable case identifiers are evaluated by Bala et al. [4]. Li
et al. [19] follow another approach and create an object-centric event log format
that does not require a case notion as it is required for the XES format. In this
publication, Li et al. argue that this object-oriented event log format helps to
store relations in the form of 1:n and n:m as it is common in databases. The
problem involved in the usage of classic “flattened” event logs is also discussed
in [2]. To solve the issue, the author proposes an object-centric process mining
approach. The majority of these works do not consider the causality relations
between events or do not explicitly represent batching nodes in a tool that can
be used by a process analyst for batch analysis.

There are works that take into causality along with n:m relations. Dumas
and Garćıa-Bañuelos [9] discuss a process mining approach based on prime event
structures. This publication transforms the cases in an event log into prime event
structures and then use the concept of asymmetric event structures to create
a process model. This approach is further used in [3] to diagnose behavioral
differences between business process models. A similar approach is chosen by
Ponce de León et al. in [18]. The authors use event structures together with
the concept of occurrence nets to create process models. In [5], the author also
uses prime event structures as an intermediate step to create a process model.
However, in comparison to [3] and [18], the author uses a different approach for
creating the process model out of the separated prime event structures. Similar to
our approach, these approaches utilize the concept of event structures. However,
they use the event structures to create process models by combining the event
structures. Thus, they are losing the possibility of considering the single process
instances separated from each other, which is an essential part of analyzing
different batching events.

For what concerns stream ii), Fahland [13] presents the concept of event
synchronization, which is related to the concept of batching. He emphasizes that
proper semantics for processes with many-to-many interactions require, among
others, cardinality constraints. Research on modeling batch behavior in a business
process addresses this point at least at the type level. Pufahl et al. [25] extend
BPMN with a specific batch activity type that considers an activation rule, a
grouping attribute, a maximum batch size, and an execution order along with
the definition of corresponding operational semantics. Martin et al. [23] present
batching metrics for identifying patterns in event logs that point to batches. These
include frequency of batch processing, batch size, instances per batch, duration
and waiting times of instances in batches and temporal overlaps of batches. Klijn
and Fahland [17] devise an algorithm to mine some of those metrics. Furthermore,
Martin et al. define a mining technique for discovering batch activation rules
in event logs [22] assuming that any observation of events done by the same
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resource doing the same activity for different cases represents a batch. Without
knowledge about causality between events, this assumption may lead to spurious
batches. Lu et al. [20], Diamantini et al. [8] and Genga et al. [14] consider the
causality between events by modeling the traces as a partial order of its events.
However, these works are different than ours since they only model batching
behavior within a process instance leaving out inter-case batching. Finally, a
combination of mining (i) n:m relations and (ii) presenting batching behaviour
based on causal event models is a novel approach.

4 Batch Analysis based on Causal Event Models

This section proposes our approach to discover specific batching behavior, which
explains characteristics in batching behavior from an event log. Section 4.1
presents the underlying formal concept used to capture causally related data
from an ERP system. Section 4.2 discusses how all relevant batching nodes are
identified, how batches are visualized and insights into batching behavior is
presented. Finally, Section 4.3 discusses the implementation of our approach.

4.1 Determine Causal Event Models for Event Log

The first step of our approach is concerned with identifying the causal relations
between event instances of the event log. To this end, we make use of foreign
key relationships between entities of the database schema. Based on these rela-
tionships, we are able to reconstruct which events have triggered each other in
passages of the process that exhibits 1:n or n:1 relationships like in order:delivery
(n:1). As a formal structure for representing causal event models of the event log,
we build on conflict-free prime event structures.

Definition 1 (Conflict-free prime event structure). A labeled conflict-free
prime event structure is defined by the tuple cf PES “ xE,ď, λy, where E is
a set of events, ď defines the causality relation as a partial order on E and
λ : E Ñ Λ is a labeling function.

A cf PES is based on the prime event structure (PES) as defined in [3]
excluding conflict relations. The latter are excluded from cf PES, because
conflicts and decisions that where made during the process execution are not
visible in the event log, and therefore they can also not be represented in our
causal event model. A cf PES is equivalent to the notion of labeled partial order.
As an example for a cf PES, Fig. 1 depicts the order-to-cash processes from our
industry partner discussed in Section 2. The example in Fig. 1 shows one order
with three separate items that got picked individually from the warehouse and
then delivered in one package.

If the whole event log is described by using a cf PES, we call it a database
of conflict-free prime event structure (DB PES) or a causal event log. Such a
DB PES can contain several separated cf PES, but also cf PESs that share
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Fig. 1: Example cf PES for the Motivational Scenario.
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Fig. 2: Example DB PES for the Motivational Scenario. The Numbers in Square
Brackets Depicts the Order Affiliation.

one or several events. We call these shared events batch nodes, since they are
bundling together several process instances.

For example, in the running order-to-cash process example, the orders a1, and
a2 might be bundled into one delivery d. A corresponding cf PES “ xE,ď, λy
would then be composed of E “ ta1, a2, du, ď“ tpa1, dq, pa2, dq, pa3, dqu, and
λ “ tpa1, orderq, pa2, orderq, pd, deliveryqu, when we omit the other events.
Fig. 2 depicts these two order-to-cash cf PES. As can be seen in Fig. 2 the
two individual orders (the text in square brackets represents the event affiliation
to E) share a common delivery event.

4.2 Batching Analysis

Once the DB PES is created, various analysis operations can be performed to
analyse the data. In the work at hand, the functionality to analyse the batching
behavior is presented. In the following, we will first define some preliminaries,
and then the analysis approach.

Definition 2 (Event Type, Case Identifier, Node Identifier, Preset and
Postset Nodes). Given E is a set of events and ET is a set of event types, we
define τ : E Ñ ET as the function that returns the type of an event. We define
eτ “ τpeq. Furthermore, we define id : E Ñ I as an index function for the node
ID, and c ids : E Ñ I as an index function that defines the case IDs of the cases
that are using an event e P E. Furthermore, for a relation R Ď E ˆE, we define
for an e P E the preset of nodes ‚e “ tx | px, eq P Ru and the postset of nodes
e‚ “ tx | pe, xq P Ru.
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To perform an analysis of the batching operations, we devise an algorithm that
first identifies all batching nodes Ebatches of a DB PES, i.e., Ebatches “ te|e P
E^ |c idspeq| ą 1u. In a second step the algorithm identifies for each e P Ebatches
the cf PES that contains the batching node, defined by cf PESebatch. This is
done by iterating through the nodes of the DB PES with ‚e and e‚, starting
from the batch node e P Ebatches, until the start and end nodes, i.e., | ‚ e| “ 0,
respectively |e ‚ | “ 0, are reached. The start and end nodes are stored in Eestart
and Eeend.

Depending on the size of the cf PESebatch, the visualisation can be too
crowded for a clear visualisation. To overcome this problem, the algorithm
aggregates all nodes with the same event type, i.e., eτ , of the cf PESebatch
together. This aggregation step also counts the quantity of the aggregated nodes
and relationships, and the cardinality in a form of t1:1, 1:N, N:1, N:Mu of each
relationship. Additionally, the algorithm gets all preceding nodes of the batching
events, i.e., Eeprec “ t‚e|e P Ebatchesu. Eventually, the collected information, i.e.,
cf PESebatch, Eebatches, E

e
start, and Eeend, is returned by the algorithm.

The returned information can then be used to visualize and analyze the
batches. To this end, we use a visualization based on the aggregated cf PESebatch
in a way that all cf PESs are shown and the corresponding batch nodes (stored
in Eebatches) are highlighted. Furthermore, we provide for each e P Eebatches: event
type eτ , the batching factor |c idspeq| (i.e., the size of the batch), the execution
start and end time of e, the average duration of the start of the preceding nodes
Eeprec to the start of the batch node e, the earliest start time in Eestart, and the
latest end time in Eeend.

4.3 Implementation

Our approach has been implemented as a proof-of-concept, called Causal Miner.
The prototype is developed in Java and uses the Spring Framework (vers. 2.3.0).
We store the cf PESs built from the event log in the graph database Neo4j
(vers. 4.0.4) and use Cypher as query language. At the current state, the event
log data can be read from Oracle DB as well as from Microsoft SQL Server. The
visualisations are provided in a Web UI. The source code of the proof-of-concept
prototype can be accessed on GitHub (https://github.com/piwa/causal-miner).

For the analysis of the batching operations, several Cypher queries are used.
Two of them are presented in Listing 1.1 and Listing 1.2. The former returns the
Ebatches’s ordered by the batching factor. To limit the result, the query returns
only the three Ebatches’s with the highest batching factor, however, this limitation
is configurable. Listing 1.2 returns the cf PESebatch for the e P Ebatches with the
node IDpeq “ 5647. For a better readability, we replaced some configuration
parameters in line 5 with “¨ ¨ ¨ ”.

Listing 1.1: Neo4j Cypher Query to Find all Batching Nodes.

1 MATCH (n:InstanceActivity) WHERE size(n.instanceIds) > 1
2 RETURN DISTINCT ID(n) AS batchNodeId , size(n.instanceIds) AS batchSize ,

n.instanceIds AS batchInstanceIds
3 ORDER BY batchSize DESC LIMIT 3;

https://github.com/piwa/causal-miner
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Listing 1.2: Neo4j Cypher Query to get all cf PES that Share a Common
Batching Node.

1 MATCH (n:InstanceActivity) WHERE ID(n) = 5647
2 MATCH p=(: InstanceStartActivity) -[*1..10] ->(n) -[*1..10] - >(:

InstanceEndActivity)
3 UNWIND nodes(p) AS unwindedNodes
4 WITH collect(distinct unwindedNodes) AS collectedNodes
5 CALL at.ac.wuwien.extendedGroup (...) YIELD node , relationship
6 RETURN collect(distinct node) AS modelActivityList , collect(distinct

relationship) AS modelRelationshipList

5 Results and Evaluation

In this section we evaluate our prototypical implementation illustrating how it
enables both visual and quantitative analyses of batching.

5.1 Setup and Dataset

The evaluation uses a real-world dataset from our industry partner, the previously
mentioned food production company Pastamaker. The dataset is composed of
the order-to-cash processes of the company. In total the dataset contains nearly
70,000 orders with more than 8,500,000 events. As discussed in Sect. 2, the process
is composed of the following steps: A new instance is triggered by a supermarket
order. The order is then broken down into single order items. These items are
then picked from the warehouse separately. The items are then packed, and sent
as one or multiple deliveries. As a last step, the invoice is created. Some of these
steps also contain substeps and can be shared by several orders. For instance, it
is often the case that several orders are delivered together, i.e., sharing the same
delivery event, as depicted in Fig. 2.

The company uses an ERP system, which is build on an SQL database. For
the evaluation we first import the data from this SQL database into the Neo4j
graph database according to the approach presented in Section 4. Subsequently,
we perform different analysis steps on the Neo4j data.

5.2 Visualization of the Results

The Causal Miner, offers different ways to work with the data. Figure 3 shows a
screenshot of the Causal Miner. This screenshot exhibits an aggregated view of
the DB PES, which brings together all event nodes of the same type. It also
shows the node and relationship quantity (in parenthesis), and the cardinality.

Along with the aggregated view presented in Fig. 3, the Causal Miner offers
several other visualisation methods, such as methods to validate the cf PESs
according to a given process structure, to visualise single cf PESs, and to
represent the activity durations in a GANTT charts. The work at hand focuses
on the visualization of batching. A screenshot of this view is presented in Fig. 4.
The main UI consists of two tabs. In the Filter tab, several filtering functionalities
can be selected. In the Upper Batches tab, the results of the batching queries
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Fig. 3: Aggregated View of the DB PES.

are visualised. The view depicted in Fig. 4 is showing the batching node with
the highest batching factor, together with the corresponding cf PESebatch. The
tables on the right side, show the information about the batches that are gathered
by the algorithm discussed in Sect. 4.2. If a deeper analysis of the cf PESebatch is
required, an analyst can click on the Show Instances link, under the table. This
link opens the view depicted in Fig. 5 that shows all cf PESs that are involved
in the current batching node, together with information about the single events.

Fig. 4: Filtering Options and the Batching Node, including the Aggregated
cf PES, with the Biggest Batch Factor (exact times obfuscated due to privacy).

5.3 Data Analyses

Besides the visualisation possibilities shown in Section 5.2, the approach presented
in Section 4, can be used for more detailed quantitative data analyses.
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Fig. 5: Depiction of all cf PES that Share a Particular Batch Node (note: some
Information was Anonymized due to Privacy Concerns).
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Fig. 6: Data Analyses of Batching.

Figure 6 provides two types of analyses that allow us to gather interesting
insights into the batching. Figure 6a presents a scatter plot that shows the total
amount of nodes before the batching node versus the duration between the earliest
start time in Eestart and the latest end time in Eeend. Each event type is plotted
with a distinct shape. Figure 6a helps visualizing at least three main clusters of
batching. Especially, it is possible to observe that Invoices are typically batched
in five days. Figure 6b depicts a boxplot that shows the duration between the
earliest start time in Eestart and the latest end time in Eeend in different time
periods for each event type. Moreover, it can be observed that most of the time,
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the orders that are batched in the Delivery event need more time than the orders
that are batched in different events. The shorter durations in the other case
are partially due to corrections in the bookings without logistic activities and
internal orders without deliveries.

The presented charts enable a process analyst to quickly identify outlier
instances of the process. These outliers can then be analysed in a greater detail
with the help of the Causal Miner by analysing the cf PESebatch and the involved
cf PES. Figure 7 presents an outlier that was identified from the scatter plot.

Fig. 7: Identified Outlier (Exact Times Obfuscated due to Privacy).

5.4 Discussion

As shown in the evaluation, our approach provides different ways to analyze
the batching behavior: First, the Causal Miner provides a way to visualize
the processes as a whole, together with the event quantities and relationship
cardinalities, by using the aggregated view of the DB PES. Second, the Causal
Miner provides a view to analyze the batching behavior of the processes. This view
further provides a filter functionality to analyze the batching behavior regarding
different aspects. At the current state, this filtering provides, e.g., the means to
filter for the batching factor. Third, a separate view allows the analysis of the
batched processes on the instance and single events level. Fourth, the approach
provides different ways to analyze the batching by using plots. As shown, these
plots can be used to analyze the batching behavior and to detect outliers. These
outliers can then be analyzed further by using the process visualizations.

These functionalities provide an analyst a way to start with a high-level
analysis of the batching, using the plots and the filters, and then dig deeper
into the batching behavior by analyzing the aggregated and the single process
instances. Moreover, an analyst can even go to the level of single events. In
addition to the presented features, the Causal Miner provides different other
views, like representing the process instances as a GANTT chart.

Since our approach considers all events stored in a graph-based database, in
our case Neo4j, query performance also plays an important role. In our evaluation
with the 8,500,000 events, queries that are searching for specific events or process
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instances need less than 200ms. Only queries like the one presented in Listing 1.1
needs around 7.5s since this query searches for all batching nodes, and Listing 1.2
needs around 1.6s. The evaluation was done on a server with eight cores with 2,6
GHz and 47GB RAM.

6 Conclusion

This paper introduces a technique to use causal event models to capture batching
behavior. Our approach can be used to identify batches and determine its
most important attributes, which helps to retrieve further insights of the batch
processing. The algorithm is evaluated on real-world event logs, showing the
practicability and usability of the approach. The resulting data can be used to
discover batches and understand their context.

The implemented approach shows that there are important factors of batching.
The processes are batched by different node types which have different character-
istics. Important differences can be seen in complexity of the process and total
duration time of batches. Process analysts can use the data to conduct further
performance analysis and trigger process improvements.

Future work will aim at empirically comparing alternative batches in pro-
cesses and further improve batching analysis methods. This includes automatic
identification of outliers and automatic evaluation of its causing process instances.
Another direction for future research involves the automatic suggestions for
process improvement based on the batch analysis.
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7. Conforti, R., Dumas, M., Garćıa-Bañuelos, L., Rosa, M.L.: BPMN miner: Automated
discovery of BPMN process models with hierarchical structure. Inf. Syst. 56, 284–303
(2016)



12 Waibel et al.

8. Diamantini, C., Genga, L., Potena, D., van der Aalst, W.M.P.: Building instance
graphs for highly variable processes. Expert Syst. Appl. 59, 101–118 (2016)
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Abstract. Globally, interconnecting a new solar or wind generation project to the 

grid involves navigating a queue requiring financial deposits, engineering stud-

ies, and fees to upgrade the electric grid. The process can take years, during which 

time changes to regulatory regimes, tax incentives, financial markets, or compet-

itive pressures can make a project suddenly nonviable for an investor. For grid 

operators, the increasing saturation of intermittent generation concurrent with re-

tiring fossil fuel generation makes every new project increasingly complex to 

assess. This paper provides a case study of applying process mining techniques 

to address the question of whether the options proposed by Duke Energy Caroli-

nas (DEC) to reform its generation interconnection queue process are warranted. 

Two options for reform have been proposed: creating study clusters based on 

concurrency or creating them based on locational proximity. Results indicate sup-

port for aspects of both options, although some causes may prove uncontrollable 

due to their origin in external factors such as market competition and power sys-

tems engineering decision making. 

Keywords: Interconnection queue, process discovery, conformance analysis. 

1 Background 

This paper provides a case study of applying process mining techniques to “prospect” 

options for reforming generation interconnection queue procedures operated by Duke 

Energy Carolinas (DEC), an electric utility in the United States with 2.6M custom-

ers[1]. Interconnection queue refers to the process for new power plants to get approval 

for connecting to the electric grid. DEC interconnection workflows consists of the fol-

lowing steps: 1.) application and review, 2.) system impact study, 3.) potential restudy 

loops as needed including feasibility and facilities studies, 5.) interconnection agree-

ment, 6.) construction, 7.) commissioning, and 8.) commercial operations.  

Driven by rapid equipment cost declines, government incentives, and a favorable 

economic environment, the quantity of solar generation capacity installed in North Car-

olina (NC)  grew from ~1,000 MW of installed capacity in 2015 to 6,435 MW of in-

stalled capacity as of Q1 2020[2,3]. This $9B cumulative investment has made NC the 

second ranked state in the United States for solar generation capacity[3].  

Investment has been influenced by periodic expiration of the Federal Production Tax 

Credit (PTC). Created in 1992, PTC has been renewed 12 times since expiring in 
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1999[4]. In early 2016, PTC was extended until 12/31/2019. This created unprece-

dented market stability for solar project developers. In late 2019, PTC was extended 

only through 12/31/2020[4]. For this study, 12/31/2015 and 12/31/2019 are key dates. 

Investors risk developing and operating solar generation plants in exchange for sell-

ing their electricity to an electric utility at a fixed price that guarantees a positive return 

on investment. Because these investments are speculative in nature until final stages, 

economic and competitive forces can have a large effect on investor behavior.  

In 2019, North Carolina Utilities Commission (NCUC), which regulates the electric-

ity market in NC, required DEC to expedite the interconnection queue[5]. DEC pro-

posed two approaches: clustering new solar projects based on a temporal basis versus 

doing so on a locational basis. The proposed changes would involve the same activity 

sequence, but activities would be coordinated across multiple projects. Grid upgrade 

costs would be shared across multiple projects as opposed to having the single project 

that triggers an upgrade bearing the full upgrade cost[6].  

Quarterly DEC regulatory filings were used as source data for an event log of inter-

connection milestones for new solar projects. Due to their legal nature, the filings were 

assumed accurate. Filings had quarterly intervals so trace alignment would not have 

tied to daily workflow activities; a standard approach to identify factors driving activity 

bottlenecks was not viable. Summarized below, a “prospecting” approach was taken to 

compare process performance of multiple study groups filtered within a single data set.  

 

Table 1. The process “prospecting” approach taken for this study. 

Research Question Data Limitation “Prospecting” Adaptations 

Is there evidence to support tem-

porally grouped cluster studies?  

• Ha: there is seasonal varia-

tion in project activities 

• Ho: there is no seasonal var-

iation 

Data describe 

queue perfor-

mance in quar-

terly snapshots 

but do not capture 

daily activities. 

• Define two seasonal study 

groups of cases based on their 

queue entry date 

• Compare Petri net behavior 

and event log conformance 

for the seasonal groups 

Is there evidence to support loca-

tionally grouped cluster studies?  

• Ha: locational clustering 

can be seen in a higher 

count of projects per sub-

station where interconnec-

tion occurs 

• Ho: there is no locational 

clustering 

Data lack project 

developer activi-

ties that describe 

how they select 

locations or how 

they manage pro-

jects through the 

queue. 

• Define a third study group of 

cases located at top quartile 

substations in terms of project 

volume. 

• Compare Petri net behavior 

and event log conformance 

for top quartile substation 

projects vs. seasonal groups 

Is there evidence to explain how 

developers navigated the key 

date effect on their investments?  

• Ha: PTC expiration dates 

influence activities 

• Ho: PTC expiration dates 

do not influence activities 

The effect of ex-

ternal factors on 

queue dynamics 

was not directly 

measured. 

• Define a fourth study group of 

top quartile installers based 

on their number of cases 

• Compare project cancellations 

or sales in key date years vs. 

other years 
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2 Methodology 

2.1 Gather DEC regulatory filing data and convert it into MS Excel format 

An event log was assembled by collecting documents provided by DEC to NCUC on a 

quarterly basis from Oct 2015 – Apr 2020[7]. The documents were converted to a 

spreadsheet, standardized, and prepared for process mining in a relational database.  

The original data set contained 18,560 events for 4,868 cases. It included these at-

tributes: Queue Number, Queue Issued Date, Installer Account Name (5,424 null en-

tries), Energy Source Type (1 nulls), Installed Capacity (no nulls), Facility County (919 

nulls), Substation Name (752 nulls), and Feeder Number (1,331 nulls). The Installed 

Capacity attribute was removed due to unit of measure variations. The following activ-

ity types were discovered: Additional Field Work Required, Cancelled, Construction - 

In Progress, Construction – Pending, Engineering Design - In Progress, Engineering 

Design – Pending, Facility Study - In Progress, Facility Study – Pending, Feasibility 

Study – Pending, Interconnection Agreement Execution – Pending, IR Review - In Pro-

gress, Open, Request Incomplete, and Superseded. 

 

2.2 Assess Process Performance and generate an event log CSV file 

Using SQL queries, start and completion times were calculated for project activities. 

Completion times were not given, so they were imputed by determining the quarterly 

filing report date in which that activity or project disappeared: for example, if a project 

was listed as “construction – in progress” in one report but then the project was no 

longer listed in the subsequent report, construction was assumed to have completed and 

thus given a completion date of the report when it first disappeared. This reduced total 

events from 18,560 to 6,659 as events without date information were removed.  

Activity types reported by DEC changed over time. Newer activity types that ap-

peared from 2018 were filtered because they had low occurrence and incomplete data. 

Only these events were analyzed: “Open,” “Cancelled,” “Superseded,” “Construction 

– In Progress,” and “Construction – Pending.” Total events reduced from 6,659 to 

6,456. A CSV file was created in event log structure and exported. 

 

2.3 Conduct Petri net behavior and event log conformance analysis  

The CSV file was uploaded to PROM 6.9, converted to XES format, and  filtered into 

the following groups: a.) projects initiated between July 1 and December 31 (“Ones”) 

b.) projects initiated between January 1 and June 30 (“Zeros”), and c.) projects initiated 

for interconnection at a substation within the top quartile of interconnection requests 

(“TopQS”). Filter groups a.) and b.) addressed the temporal clustering question. Filter 

group .c) addressed the locational clustering question. The sequence of analysis was as 

follows: 1.) Petri net analysis, 2.) Conformance analysis using Multi-perspective Pro-

cess Explorer and Replay A Log On Petri Net for Conformance packages.  

Using PROM 6.9, Petri nets were created using Mine Petri Net With Inductive Miner 

package utilizing default settings. Inductive Miner was chosen because it produced a 

Petri net model with sequential activities most resembling the actual DEC 



4 

interconnection process, unlike Alpha Miner and ILP packages. A key assumption was 

that Inductive Minor can correctly identify the main process behavior in this event log; 

all deviations identified in conformance analysis are true process deviations.  

 

2.4 Conduct event log visualization and directly follows graph analysis 

Log analysis was conducted using Explore Event Log (Track Variants), Log Pattern 

Explorer, and Dotted Chart visualizations. Lastly, Mine Matrix package was run to gen-

erate event causality data for comparison. 

 

2.5 Analyze key date behavior of project developers (installers) 

In its regulatory filing data, DEC uses the term installer to refer to project developers. 

To assess their key date behavior a fourth study group was created for installers within 

the top quartile of solar project volume – TopQI. The project events of TopQI were 

compared to the remaining 75% of installers (Rest), focusing on events surrounding 

key legislative dates: 12/31/15 and 12/31/19. A key assumption was that larger devel-

opers have more engineers and resources compared to smaller installers. Consequently, 

TopQI were expected to be savvier in their responses to key dates. 

3 Results 

3.1 Assess Process Performance 

Figure 1 below is a forward-looking chart created in MS Excel that counts projects in 

the queue on a quarterly basis in terms of what their future end state will become. 

 

 

Fig. 1. Quarterly count of active projects by future disposition in the DEC interconnection queue. 

DEC performance in processing interconnection requests improved after 2017. If 

you were a developer entering the queue in August 2018, you would have had 3X the 

likelihood of completing your project as someone entering just 10 months before. 

Above, the 12/31/15 key date effect is visible in the precipitous decline of projects that 

will remain in progress following Q1 2015. Of this cohort of 527 projects, 20% were 

cancelled in Q3 2015, 64% went on to be cancelled or sold (“superseded”) in 2016 - 

 -

 500
Count of Active Projects

Projects That Will Be Completed

Projects That Will Remain In Progress

Projects That Will Be Cancelled or Superseded
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2019, 11% were in pre-construction state as of April, 2020, and only 6% passed onto 

the construction stage. The 12/31/19 key date effect is again visible above in the in-

crease in projects that will be canceled or superseded as of Q4 2019. 

 

Calculated in MS Excel, Figures 2 and 3 below show the average and standard de-

viation of project duration for projects in the DEC interconnection queue. 

 

  
Figure 2. Quarterly average duration (days) 

of projects in DEC interconnection queue. 

Figure 3. Quarterly standard deviation dura-

tion (days) of projects in DEC interconnec-

tion queue. 

 

For projects that will be completed, the average project duration for projects declined 

from 1,112 days in Q1 2015 to 161.93 days in Q4 2019. Standard deviation of for pro-

jects that will be completed declined from 482 days in Q1 2015 to 107 days in Q4 2019. 

Perhaps the best metric of interconnection queue performance success is whether a 

project gets constructed. Figure 4 below gives an overview of project success trends: 

 

 

 Fig. 4. Success rate for new projects initiated each quarter: the count of projects that eventually 

start construction / count of all projects initiated. 

Figure 4 provides further evidence of improving queue performance between 2017 

and 2019. Yet as the key date of 12/31/2019 approached, construction starts fell. 

Table 2 below is a summary of queue performance across the three study groups: 

 -
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Table 2. 2015 – 2020 interconnection queue performance for Zeros, Ones, and TopQS groups. 

Filter Group Total Projects Initiated Avg Elapsed Time/Case (Days) Success Rate 

Zeros: Q1 - Q2 start 1,671 167.41 89% 

Ones: Q3 - Q4 start 1,838 154.51 80% 

TopQS 890 161.25 88% 

 

Between July and December, Ones group initiated more projects (1,838) vs. Zeros 

group from January to June (1,671). Ones group projects had shorter elapsed time com-

pared to Zeros group but had a lower success rate. TopQS located projects had lower 

elapsed time compared to Zero group while having a similar success rate to Ones group. 

 

3.2 Petri Net Behavioral Analysis 

Petri nets for the Zeros, Ones, and TopQS groups were created using the Mine Petri 

Net Using Inductive Miner package and assessed using Analyze Behavioral Property 

of Petri Net and Analyze Structural Property of Petri Net packages. Results were com-

pared using the Show Petri Net Metrics package. Table 3 below summarizes results. 

Table 3. Petri analysis results for Zeros, Ones, and TopQS groups. 

  Ones Zeros TopQS All 

Density metric 0.08824  0.08824  0.06875  0.16667  

|F| 36 36 44 22 

|P X T| 204 204 230 66 

Extended Cardoso metric 15 17 20 9 

Extended Cyclomatic metric 26 22 35 9 

Number of arcs 36 36 44 22 

Number of places 12 12 16 6 

Number of transitions 17 17 20 11 

Structuredness metric 66 100 117 22 

 

Every Petri net was found to be a sound workflow net. All three groups had Extended 

Cardoso values of 14 - 20, which per Cardoso places them in the “easy to understand” 

complexity category[8]. Extended Cyclomatic metrics show wider variation than Ex-

tended Cardoso metrics: there is a wider difference in the number of possible linear 

paths across the three groups compared to the number/type of splits. The Structuredness 

metric results align more with Extended Cardoso results: TopQS has the most complex 

model, followed by Zeros and then Ones. The three filtered study groups each have 

greater workflow complexity than the event log as a whole (All). 

 

3.3 Conformance Analysis 

Conformance analysis was conducted on each filter group and the results were com-

pared side by side. The results of Multi-perspective Process Explorer and Replay A Log 

On Petri Net are shown in Table 4 below.  
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Table 4. Conformance analysis results for Zeros, Ones, and TopQS groups. 

  Ones Zeros TopQS All 

Avg activity precision 79.2% 86.4% 72.6% 94.7% 

# Moves Observed 29,897 27,488 15,089 32,342 

# Moves Possible 37,726 31,806 20,776 34,143 

Avg Fitness 63.7% 58.6% 58.2% 68.2% 

% Violations 33.4% 37.9% 39.3% 41.8% 

# Correct Events 3,983 3,946 1,619 6,973 

# Wrong Events 1,895 2,160 975 5,011 

# Missing Events 98 251 75 - 

# Traces 2,408 2,548 1,130 4,671 

# Events 5,878 6,106 2,594 11,984 

# Event Classes 5 5 5 5 

 

The Ones group had higher average fitness compared to Zeros and TopQS. All other 

conformance metrics were lower for Zeros versus Ones. Combined with the lower 

Structuredness and Extended Cardoso metrics for Ones in Table 3 above, projects ini-

tiated from July to December (Ones) have better performing models than projects ini-

tiated from January to June (Zeros). TopQS group covers the entire year with a loca-

tional focus, and it has the lowest overall precision and fitness. Despite its successful 

balance of low case duration, high success rate, and lowest raw fitness cost, the TopQS 

model has more violations and fewer correct events than Ones and Zeros. 

 

3.4 Event Log Visualizations 

The figures below summarize log visualizations for Zeros, Ones, and TopQS groups: 

  
Fig. 5. Zeros group Dotted Chart and Auto-association visualizations. 

 

 
Fig. 6. Ones group Dotted Chart and Auto-association visualizations. 
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Fig. 7 TopQS group Dotted Chart and Auto-association visualizations. 

 

The Dotted Charts for Zeros and Ones groups are similar. In the upper right corner 

of the chart, which displays recent, lowest duration events, Ones have better perfor-

mance than Zeros. For Ones, this corner is denser with events and there are more blue 

“Construction – In Progress” and green “Construction – Pending” dots that indicate 

success. Ones also have more tan “Superseded” dots and fewer pink “Cancelled” dots 

compared to Zeros. TopQS shows strongest overall performance in the dotted chart 

upper right corner: it is densest and has highest number of blue “Construction – In Pro-

gress” and green “Construction – Pending” dots.  

Auto-association plots vary most in terms of the Goodman and Kruskal’s tau values. 

For Ones, association values decline overall in the lag range of 9 down to 4 before 

increasing again. Zeros and TopQS do not have this mid-range decline. All three groups 

rapidly increase their association values at the lowest lag values. 

 

3.5 Directly Follows Graph 

Convert Log to Directly Follows Graph package was next run on each group to compare 

high-level views of the queue process. Figures 8-10 below show the resulting graphs. 

 

   
Fig. 8. Directly follows 

graph of the Zeros group 

Fig. 9. Directly follows 

graph of the Ones group 

Fig. 10. Directly follows 

graph of the TopQS group 

 

Comparing Figures 8-10 to the interconnection queue in Figure 1 above, the directly 

follows graphs differ in the flow of events through the “Construction – Pending” activ-

ity. The DEC proposed process shows a series of engineering studies of a new power 

plant and the milestone payments that lead to a facilities study and then an interconnec-

tion agreement prior to construction start. In Figures 8-10, a project can proceed to 

“Construction – Pending” directly from the initial “Open” activity, but it is most 
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common for a project to attain “Construction – In Progress” prior to “Construction – 

Pending.” Ones and Zeros differ in the path to “Cancelled” activity, which in the case 

of Zeros can occur directly following the “Construction – Pending” activity. TopQS 

shows the most hierarchical flow of events, having both “Cancelled” and “Superseded” 

both directly following “Construction – Pending” activity. 

 

3.6 Key Date Behavioral Analysis: Solar Project Developers  

Key date behavioral analysis focused on comparing installers (developers) accounting 

for the top quartile of solar project volume (TopQI) group to the rest of installers (Rest). 

Comparing the October to January period for key dates of 12/31/15 and 12/31/19, when 

PTC was set to expire, versus 12/31/2016, 12/31/17, and 12/31/2018, a sharper picture 

of queue dynamics emerges. Table 5 below shows this comparison. 

Table 5. Comparison of key project activities that start between October to January for PTC 

expiration dates (2015, 2019) versus other years (2016, 2017, 2018). 

Time Period Cancelled Construction 

- In Progress 

Construction 

- Pending 

Queue Issued Superseded 

PTC Expira-

tion 2015 

134 0 0 304 0 

PTC Expira-

tion 2019 

166 0 0 501 47 

2016, 2017, 

2018 

192 296 49 948 60 

 

PTC expiration years of 2015 and 2019 had a disproportionate number of projects 

cancelled or superseded (347 = 134+166+0+47) versus the other years (252=192+60). 

No projects were committed to construction in 2015 or 2019. More projects were initi-

ated in the 2019 end of year period (501) versus 2015 (304), although this was far below 

2016 – 2018 levels (948).  

 

The tables below compare top quartile installers (TopQI) to the Rest of installers. 

Table 6. Comparison of key project activities of TopQI group during end of year time intervals. 

Time Period Cancelled Construction 

- In Progress 

Construction 

- Pending 

Queue Issued Superseded 

PTC Expira-

tion 2015 

77 0 0 218 0 

PTC Expira-

tion 2019 

72 0 0 8 23 

2016, 2017, 

2018 

103 58 13 306 21 
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Table 7. Comparison of key project activities of Rest group during end of year time intervals. 

Time Period Cancelled Construction 

- In Progress 

Construction 

- Pending 

Queue Issued Superseded 

PTC Expira-

tion 2015 

57 0 0 86 0 

PTC Expira-

tion 2019 

94 0 0 493 24 

2016, 2017, 

2018 

89 238 36 642 39 

 

For Cancelled projects, TopQI did not change practices from 2015 to 2019 key dates 

(77 vs. 72), but the Rest increased cancellations by 65% in 2019 (57 vs. 94). For project 

starts (Queue Issued), TopQI decreased theirs by 96% from 2015 to 2019 key dates 

(218 vs. 8) and the Rest increased Queue Issued by 83% (86 vs. 493). For Superseded, 

TopQI and the Rest both increased this activity in 2019 (0 vs. 23 and 24, respectively).  

4 Discussion 

4.1 Petri Net Behavioral Analysis 

Variation in complexity metrics observed across groups and scenarios based on the 

same business workflow could point to both anomalies in the data set and opportunities 

to streamline the workflow and standardize its data model, simply from the perspective 

of reducing errors. Since all groups derive from the same event log which has been 

simplified by removing low occurrence events, these complexity differences could re-

flect real variances in the process. Additionally, better Petri net performance observed 

in the Ones model could explain its advantage in average case time assuming poor pro-

cess performance is reflected in project delays. However, the observations rely on In-

ductive Minor’s ability to correctly portray the main process model in Petri net outputs.   

 

4.2 Conformance and Event Log Analysis 

Seasonality is a factor in model performance. There is seasonal variance in case dura-

tion, in the number of events and traces per case, and in model conformance.  

Assuming Inductive Minor did accurately capture the main process model in its gen-

erated Petri nets so that variance across study groups reflects real process variation, 

Zeros had worse model performance than Ones but also had a higher success rate. Pro-

jects initiated from July to December (Ones) had more low-occurrence events that were 

removed during data preparation and this could have advantaged its model performance 

compared to projects that initiated from January to June (Zeros). Having a lower project 

workload did not make Zeros group interconnection requests get processed faster than 

Ones group. It is possible that Zeros having extra time helped resolve issues blocking 

construction starts, but the key date effect could just as likely have increased cancella-

tions for Ones during the end of the year. The higher share of project cancellations and 
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supersessions (sales) during the end of year period could have been a factor on Ones 

having a lower success rate versus Zeros. Despite having the lowest density model, 

TopQS had the lowest model fitness and precision. The simpler model for TopQS did 

not advantage its model conformance. From a model conformance perspective, it is not 

clear what drove TopQS success.  

Dotted Chart results of Figures 5 – 7 above show differentiation across groups in 

shortest duration events occurring in the most recent time intervals. In this upper right 

quadrant area, Ones have higher success versus Zeros and TopQS have highest success 

overall. Relative success and short duration of TopQS projects could be a recent trend. 

Overall, if Inductive Minor did not accurately portray the main process flows then 

the validity of conformance analysis results is questionable. However, the study group 

differentiation observed in Dotted Chart results could support the differentiation ob-

served in conformance analysis. 

 

4.3 Key Date Behavioral Analysis 

End of year project activities differed between the TopQI and Rest of installers group. 

Comparing TopQI to the Rest, there is a relative increase in Q4 cancellations across all 

years, but not on the specific key dates of 2015 and 2019. TopQI also showed a relative 

increase in superseded projects in Q4 and on key dates compared to the Rest. For project 

initiations, TopQI had a greater volume in Q4 across all years including key dates com-

pared to the Rest, but the volume of project initiations was still lower during this time 

of year. Overall, it appears that TopQI were reducing DEC area investment at the end 

of 2019 while the Rest were still ramping up DEC area investment. TopQI were ag-

gressive investors in 2015 but cautious or exiting the DEC area in 2019. 

 

4.4 Approach Viability 

Converting regulatory filings into an event log for process “prospecting” analysis was 

a novel approach. Because the main questions in the queue reform debate had already 

been framed within publicly available documents, process “prospecting” was able to 

provide valuable context despite limitations of the data set.  

Filtering study groups from a common data source met the objective of finding pro-

cess variations relative across the groups. Going further to benchmark this interconnec-

tion queue data set against that for queues in other regions would be a more challenging 

topic which would require more robust data. 

Addressing more detailed questions about root cause would have required alignment 

analysis at the trace level. Alignment analysis was not viable because the end dates of 

many activities were imputed on a quarterly basis, which may have created concurrency 

that did not really exist. 

5 Conclusions 

Based on results, the null hypotheses for seasonal and locational cluster patterns can be 

rejected. Neither the process performance nor process “prospecting” results indicate 
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seasonal or locational uniformity in the DEC interconnection queue. In terms of project 

developer behavior, the null hypothesis that PTC expiration dates do not influence pro-

ject events can also be rejected. Addressing the influence of key dates on project events 

will be an important consideration to finalizing the proposed DEC cluster study process.  

Process “prospecting” played a useful role in addressing whether the proposed queue 

clustering approaches were warranted. Its insights into model performance could be 

useful to design the optimal cluster study workflow. As a followup, process mining on 

a more robust DEC interconnection queue data set could determine whether the process 

variances observed by Inductive Minor are accurate. In addition to supporting the busi-

ness and regulatory mandate for queue reform at DEC, this could help improve the 

design of the cluster study workflow. 

More broadly, this study confirmed that process mining can be incorporated to ben-

efit process-focused business scenario analysis. PROM 6.9 offered a vast array of ana-

lytical options, which was advantageous. Since it is a research tool, the downside of 

PROM 6.9 is that each plugin has its own documentation and accompanying research 

papers. This caused some confusion around interpreting process mining results.  

From the industry perspective, process “prospecting” is a common scenario; busi-

nesses are likely to begin a process transformation initiative with a small pilot and lim-

ited data. There is an opportunity in the process mining community to craft a “prospect-

ing” interface that allows practitioners to assess their data and recommend plugin op-

tions that meet their study objectives. Long term, meta-research studies across the suite 

of PROM 6.9 plugins may be useful to cultivate the process mining body of knowledge.  
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Abstract. Enterprise information systems allow companies to maintain detailed
records of their business process executions. These records can be extracted in
the form of event logs, which capture the execution of activities across multi-
ple instances of a business process. Event logs may be used to analyze business
processes at a fine level of detail using process mining techniques. Among other
things, process mining techniques allow us to discover a process model from an
event log – an operation known as automated process discovery. Despite a rich
body of research in the field, existing automated process discovery techniques do
not fully capture the concurrency inherent in a business process. Specifically, the
bulk of these techniques treat two activities A and B as concurrent if sometimes
A completes before B and other times B completes before A. Typically though,
activities in a business process are executed in a true concurrency setting, mean-
ing that two or more activity executions overlap temporally. This paper addresses
this gap by presenting a refined version of an automated process discovery tech-
nique, namely Split Miner, that discovers true concurrency relations from event
logs containing start and end timestamps for each activity. The proposed tech-
nique is also able to differentiate between exclusive and inclusive choices. We
evaluate the proposed technique relative to existing baselines using 11 real-life
logs drawn from different industries.

1 Introduction

Enterprise information systems, such as Enterprise Resource Planning (ERP) systems,
maintain detailed records of each execution of the business processes they support.
These records can be extracted in the form of event logs. An event log is a set of event
records capturing the execution of activities across a set of instances of a process.

Process mining techniques allow us to exploit event logs in order to analyze busi-
ness processes at a fine level of detail. Among other things, process mining techniques
allow us to discover a process model from an event log – an operation known as auto-
mated process discovery. Despite a rich body of research in the field, existing automated
process discovery techniques do not fully capture the concurrency inherent in business
processes. Indeed, the bulk of automated process discovery techniques operate under
an interleaved concurrency model – a model of concurrency where two events are con-
current if they occur in either order. Specifically, existing techniques treat two activities
A and B as concurrent if sometimes A completes before B and other times B completes
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before A. The interleaved concurrency model is suitable in systems where actions are
atomic. However, in a business process, activities have a duration and the execution of
two or more activities may overlap temporally. In other words, business processes con-
tain true concurrency. The failure of existing automated process discovery techniques
to take into account this true concurrency leads them to miss certain concurrency rela-
tions. For example, when an activity A always completes before activity B (because B
takes longer) even though A and B overlap, existing techniques treat A and B as sequen-
tial. If A is then followed by C and C usually completes after B (but overlaps with it),
they conclude that A, B and C are sequential, thus missing the observed concurrency.

This paper addresses this gap by presenting a refined version of an automated pro-
cess discovery algorithm, namely Split Miner [6], capable of discovering true concur-
rency relations from event logs that record both the start and end timestamps of activity
executions. The proposed technique, namely Split Miner 2.0, is also able to differentiate
between exclusive and inclusive choices. The paper reports on an empirical evaluation
that compares Split Miner 2.0 against existing baselines in terms of accuracy and model
complexity measures.

The rest of the paper is structured as follows. Section 2 briefly reviews existing au-
tomated process discovery techniques. Section 3 introduces the approach to exploit true
concurrency for automated process discovery. Section 4 presents the empirical evalua-
tion while Section 5 summarizes the findings and further possible extensions.

2 Background and Related Work

An event log records information about a set of executions of a business processes
(a.k.a. cases). Concretely, an event log is a chronological sequence of events, each one
capturing a state change in the execution of an activity. As a minimum, each event in a
log has three attributes: the identifier of the process execution (a.k.a. case ID); the label
(i.e. the process activity the event refers to); and the timestamp (e.g. 10/07/2020 10.43).
Optionally, an event may have other attributes such as the resource who triggered the
event, their department, etc. In this paper, we require that at least one fourth attribute is
attached to each event, namely the life-cycle transition. For a given event, this attribute
indicates what state-change the referenced activity has undergone. The life-cycle of an
activity captures all the states in an activity execution and their possible transitions. In
general, one could observe very complex life-cycles, including states such as created,
assigned, started, suspended, etc. In this paper, we adopt a simple life-cycle model
wherein an activity execution can be in one of two states: start (i.e. the activity execution
started); and end (i.e the activity execution ended).

Event logs can be exploited for different types of analysis including conformance
checking, process performance mining, and automated process discovery[16]. In this
paper, we focus on the latter. The goal of automated process discovery is to discover a
process model (such as the one in Figure 1) by analysing an event log such as the one
in Table 1 (the latter is just an extract and not a full log).

The quality of an automatically discovered process model is traditionally assessed
over four dimensions: fitness – the amount of process behaviour recorded in the event
log that can be replayed by the process model; precision – the amount of behaviour
captured by the process model that can be found in the event log; generalization – the
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Fig. 1: Process model example.

Case-ID Activity Life-cycle Timestamp
1 a start 2020-07-08 10.03
2 a start 2020-07-08 10.42
1 a end 2020-07-08 10.57
2 a end 2020-07-08 11.21
1 b start 2020-07-08 13.29
1 c start 2020-07-08 14.13
2 b start 2020-07-08 15.22
2 b end 2020-07-09 10.24
1 b end 2020-07-09 10.37
2 d start 2020-07-09 11.13
2 d end 2020-07-09 12.28
1 c end 2020-07-09 12.53

Table 1: Event log example.

amount of behaviour captured by the process model that even not being observed in the
event log is likely to belong to the original process; and simplicity – quantifying how
difficult is to understand the process model. Furthermore, a process model should be
sound. The notion of soundness has been defined on Workflow nets [17] as a correct-
ness criterion, and is also applicable to BPMN models. Formulated on BPMN models,
soundness encompasses three properties: i) every process instance eventually reaches
the end event (no deadlocks); ii) no end event is reached more than once during a pro-
cess execution (proper completion); iii) each process activity is triggered in at least one
process execution (no dead activities).

A recent literature review of automated process discovery algorithms [5] showed
that only few algorithms stand out for accuracy and performance among those out-
putting procedural process models. Specifically, Inductive Miner (IM) [10], Evolution-
ary Tree Miner (ETM) [7], and Split Miner (SM) [6]. IM and ETM are known to dis-
cover process models that are either highly fitting or precise, discovering simple, block-
structured and sound process models, while SM focuses on maximizing both fitness
and precision at the cost of simplicity, structuredness, and in rare cases compromising
the soundness of the process models [5, 6]. However, of these three automated process
discovery algorithms, only IM provides a variant that takes into account the activities’
life-cycle when discovering a process model. IM life-cycle variant [11] analyses the
activities’ life-cycles to distinguish between concurrency and interleaving relations.

Past studies that investigated the problem of discovering control-flow relations be-
tween activities by leveraging life-cycle information or execution times include: (1) a
simple algorithm [13] for discovering block-structured process models from complete
and noise-free event logs; (2) an extension of the α-algorithm, i.e. the β algorithm [19];
(3) an extension of Heuristics Miner [8]; and (4) the work of Senderovich et al. which
explores process performance modelling via temporal network representation [14]. The
first one is limited to noise-free log. The second and third are based on underlying al-
gorithms that produce unsound and inaccurate models when applied to real-life event
logs, as shown in [5]. The fourth approach is not geared to discovering process models
but rather targets the problem of performance mining.

In this paper, we extend the SM algorithm, which has been shown to produce ac-
curate and (generally) sound process models over real-life logs. Figure 2 shows an
overview of how SM discovers a process model from an event log. Given an input
event log, SM operates over five steps: i) discover the directly-follows graph (DFG)
and loops from the event log; ii) analyse the DFG for discovering concurrency rela-
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tions; iii) filter the DFG by removing the infrequent behaviour; iv) discover the split
gateways; v) discover the join gateways. Each step is a standalone operation based on
tailored algorithms [6], such a modular approach allows the replacement of any step
with alternative methods. In this paper, we show how we updated the first, second, and
fifth steps to discover true concurrency and inclusive choices, and reduce the chances
of producing unsound process models via heuristics.

Event
Log

DFG and
Loops Discovery

Concurrency
Discovery

Filtering
Splits

Discovery
Joins

Discovery
BPMN
Model

Fig. 2: Overview of the Split Miner approach [6].

3 Approach

In this section, we describe how we redesigned the first two steps of the Split Miner
original approach [6] and integrated in the last step two heuristics to repair models
that are unsound due to improper completion and identify inclusive relations between
activities, enabling the discovery of OR-splits.

3.1 Refined Directly-follows Graph Discovery

Given an event log, the first step performed by Split Miner is to sequentially read the
events and build the directly-follows graph (DFG). Although this operation is straight-
forward, its output strictly depends on how the event log and the DFG are defined.
Definitions 1, 2, and 3 capture the notion of DFG used in the original Split Miner.

Definition 1. [Event Log as in [6]] Given a set of process activity labels A , an event log L is
a multiset of traces, where a trace t ∈L is a sequence of activity labels t = 〈a1,a2, . . . ,ak〉, with
ai ∈A ,1≤ i≤ k. In addition, we use the notation a ∈A to refer an activity a that belongs to a
generic trace t ∈L . 1

Definition 2. [Directly-Follows Relation as in [6]] Given an event log L and two process
activities ax,ay ∈A , we say that activity ay directly-follows activity ax, with notation ax ay, if
and only if (iff) ∃ 〈a1,a2, . . . ,ak〉 ∈ L | ai = ax∧a j = ay∧ j = i+1∧0 < i < n.

Definition 3. [Directly-Follows Graph as in [6]] Given an event log L , its Directly-Follows
Graph (DFG) is a directed graph G = (N,E), where N is the non-empty set of nodes, where each
node represents a unique activity a ∈L and there exists a bijective function λ : N 7→ A such
that λ (n) retrieves the activity n refers to; and E is the set of edges capturing the directly-follows
relations of the activities observed in L , E = {(n,m) ∈ N×N | λ (n) λ (m)}.

To capture the activities’ lifecycle information, we refine the concept of event log.

Definition 4. [Refined Event Log] Given a set of events E , a refined event log Lρ is a multiset
of traces, where a trace t ∈Lρ is a sequence of events t = 〈e1,e2, . . . ,ek〉, with ei ∈ E ,1≤ i≤ k.
Each event e ∈ Eρ is a tuple e = (l, p, t), where l ∈A is the process activity the event refers to,
retrieved with the notation el; p ∈ {start,end} is the state of the life-cycle of activity l, retrieved
with the notation ep; and t is the timestamp of the event, retrieved with the notation et .

1 For simplicity, we use the term activity to refer to its label.
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While redefining the event log to capture the activities’ life-cycle information is intuitive
and follows from its original definition [16], the same does not apply for the DFG.
Indeed, more than one approach could be used to generate a DFG from a refined event
log. The simplest approach would be to disregard all the events of a specific state of an
activity life-cycle, for example, we could remove from Lρ all the events e ∈Lρ | ep =
start or all the events e ∈Lρ | ep = end. Then, the refined event log would turn into an
event log (Definition 1) and the DFG would be constructed according to Definition 3,
but this would be equivalent to discarding the activities’ lifecycle information.

An alternative approach was proposed by Leemans et al. [11] and incorporated into
a variant of the Inductive Miner that takes into account lifecycle transitions, herein
called Inductive Miner Lifecycle (IM-lc). According to [11], an activity ay directly-
follows an activity ax if any of the life-cycle states of activity ay is observed after any
of the life-cycle states of activity ax in the same trace and between the two observations
no activity completes the execution of its full life-cycle (see Definition 5).

Definition 5. [Directly-Follows Relation as in [11]] Given a refined event log Lρ and two
process activities ax,ay ∈ A , the relation ax  ay holds iff ∃ 〈e1,e2, . . . ,ek〉 ∈ Lρ | el

i = ax ∧
el

j = ay∧ i < j∧@n,m ∈ ] i, j [ | n < m ∧ ep
n = start∧ ep

m = end∧ el
n = el

m.

According to Definition 5, a directly-follows relation would hold between two activ-
ities whose life-cycles overlap (i.e. the start-state of an activity is observed between
the start-state and the end-state of another activity). While this is important and useful
for IM-lc to discover concurrency relations [10], it would not be beneficial for Split
Miner, since Split Miner requires to remove the directly-follows relations between ac-
tivities that are considered concurrent [6]. Consequently, we are interested in discard-
ing directly-follows relations of activities whose life-cycles overlap. We redefine the
directly-follows relation of activities observed in a refined event log as follows. An ac-
tivity ay directly-follows an activity ax if the start-state of the life-cycle of activity ay
is observed after the end-state of the life-cycle of activity ax and no end-state of other
activities are observed in between (see Definition 6).

Definition 6. [Directly-Follows Relation] Given a refined event log Lρ and two process activi-
ties ax,ay ∈A , the relation ax r ay holds iff ∃ 〈e1,e2, . . . ,ek〉 ∈ Lρ | el

i = ax∧el
j = ay∧ep

i =

end∧ el
j = start∧1≤ i < j ≤ k∧@n ∈ ] i, j [ | ep

n = end.

A
B

C

D

E

F

(a) Split Miner [6].

A
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F

(b) Inductive Miner LC [11].
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D

E

F

(c) Our approach.

Fig. 3: Examples of discovered DFGs by applying Definition 2, 5, and 6 (left to right).

The new version of Split Miner we propose in this paper relies on Definition 6. De-
pending on the definition of directly-follows relation that one adopts when generating
the DFG, one may discover very different DFGs. As an example, let us consider the
following refined event log (captured as a collection of traces, where each event is
represented as the activity it refers to – including its life-cycle state as subscript, s
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standing for start and e standing for end): Lρ x =
{〈As,Ae,Bs,Cs,Ce,Be,Es,Ds,De,Ee,Fs,Fe〉,〈As,Ae,Bs,Cs,Be,Ce,Es,Ds,Ee,De,Fs,Fe〉,
〈As,Ae,Cs,Bs,Be,Ce,Ds,Es,De,Ee,Fs,Fe〉,〈As,Ae,Cs,Bs,Ce,Be,Ds,Es,Ee,De,Fs,Fe〉};
Figure 3 shows the DFGs discovered from the Lρ x by applying Definition 2 (orig-
inal Split Miner approach), Definition 5 (Inductive Miner life-cycle approach), and
Definition 6 (this paper approach).

3.2 Refined Concurrency Discovery

The second step of the original Split Miner that we redesigned is the concurrency dis-
covery. Split Miner relies on a simple heuristic to discover concurrency, precisely, given
a DFG and two activities A,B ∈A such that neither A nor B is a self-loop, A and B are
assumed concurrent iff three conditions are true: A directly-follows B and B directly-
follows A (Relation 1); A and B do not form a short-loop (Relations 2 and 3); the fre-
quency of the two directly-follows relations A B and B A is similar (Relation 2).2

A B∧B A (1)

@〈a1,a2, . . . ,ak〉 ∈L | ai = A∧ai+1 = B∧ai+2 = A ∧ i ∈ [1,k−2] (2)

@〈a1,a2, . . . ,ak〉 ∈L | ai = B∧ai+1 = A∧ai+2 = B ∧ i ∈ [1,k−2] (3)

||A B|− |B A||
|A B|+ |B A|

< ε (ε ∈ [0,1]) (4)

The simplicity of the concurrency oracle of Split Miner derives from the simplicity
of the input event log (see Definition 1). However, when receiving as input a refined
event log (Definition 4), it is possible to identify true concurrency by focusing on ac-
tivities whose life-cycles overlap and are hence truly executed concurrently (e.g. by
different process resources). Consequently, we redefine the concurrency discovery ora-
cle as follows. Given two activities A,B ∈A and a refined event log Lρ , we say A and
B are concurrent if the following relation holds:

2 · |A� B|
|A|+ |B|

≥ ε (ε ∈ [0,1]) (5)

where |A� B| is the total number of observations of overlapping life-cycles of A
and B in Lρ ; |A| and |B| are respectively the total number of complete life-cycle3 ob-
servations of activity A and activity B in Lρ ; and ε is an arbitrary variable (given as
input parameter) defining the minimum percentage of times that the two activities’ life-
cycles are required to overlap to assume the two activities concurrent. In particular,
when ε = 1 our notion of concurrency is equivalent to the notion of strong simultane-
ousness defined by Van der Werf et al. [18] as well as Allen’s interval relations [3] of
overlaps, contains, starts, and is finished by. While for any other value of ε > 0 it is
equivalent to a parametrized notion of weak simultaneousness [18]. Given that real-life
event logs often contain noise and infrequent process behaviour, requiring ε = 1 would
be very restrictive and may lead to the discovery of no concurrent activities.

Although both our approach and IM-lc infer concurrency relations between activ-
ities from the observation of overlapping life-cycles, we rely on an heuristic before

2 The frequency of a directly-follows relation is the number of times the relation is observed.
3 E.g. including start and end states.
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validating the concurrency relations (i.e. Equation 5) – in-line with the original Split
Miner; while IM-lc assumes the information contained in the log to be valid a priori
(this is mitigated by another extension of IM-lc that embeds a filtering technique [11]).

3.3 Heuristic Improvement

Although Split Miner guarantees to discover sound acyclic process models and
deadlock-free cyclic process models with no dead activities, for cyclic process models
it does not guarantee proper completion. However, it is possible to reduce the chances
to discover process models exhibiting improper completion by applying the following
heuristic: for each AND-split gateway in a process model with an outgoing edge that
is a loop-edge (leading to a topologically deeper node of the process model), we create
a preceding XOR-split gateway and set this latter as source of the loop-edge. Figure 4
intuitively show how the heuristic operates, the loop-edge is highlighted in blue and, in
general, activities could be present in the loop-edge.

(a) Model with improper completion. (b) Model after applying heuristic.

Fig. 4: Heuristic removal of improper completion generated by loops.

Lastly, we integrated an heuristic to discern between concurrency and inclusive
relations, in other words identifying when an AND-split gateway is a candidate OR-
split gateway. This second heuristic operates as follows. For each AND-split gateway
in a process model, we consider all the successor activities and we check pairwise
whether there exist traces where the pair of activities are mutually exclusive (i.e. one
of the two activities is executed but not the other). Then, if the majority of the pairs
of activities are both mutually exclusive and concurrent in different traces,4 we turn
the AND-split gateway into an OR-split gateway and we update accordingly the OR-
join gateway. As an example, let us consider the model in Figure 5a and the event log
Lρ y = {〈As,Ae,Bs,Cs,Ds,Be,De,Ce,Es,Ee〉3,〈As,Ae,Cs,Ds,Ce,De,Es,Ee〉2,
〈As,Ae,Bs,Ds,De,Be,Es,Ee〉,}; B and C are observed three times concurrently and three
times are mutually exclusive, B and D are observed four times concurrently and two
times mutually exclusive, C and D are observed five times concurrently and one mutu-
ally exclusive. Given that two pairs of activities out of three (B,D and B,C) are eligible
for inclusiveness, we turn the AND gateways into OR gateways (Figure 5b).

4 Evaluation

In this section, we present an empirical evaluation that compares Split Miner 2.0
(SM2.0) with three state-of-the-art automated process discovery algorithms: the original
Split Miner [6] (SM), the Inductive Miner Lifecycle (IM-lc) [10] including its infre-
quent behaviour filter [11], and the most recent version of IM, namely IMfa [9].

4 With at least one observation of mutual exclusiveness every two observations of concurrency
or vice-versa.
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(a) Before. (b) After.

Fig. 5: Heuristic identification of OR-split gateways.

4.1 Dataset and Setup

As testing dataset, we selected eleven real-life event logs (L1-L11) containing activ-
ity lifecycle information. The logs were sourced from companies operating in different
fields (e.g. insurance, manufacturing, banking) and geographic areas (i.e. Europe and
Australia). Given that these logs are not publicly available, we added a publicly avail-
able simulated event log known as the “Repair example” (R-Log),5 which also contains
activity lifecycle information. We did not include the BPIC12 and BPIC17 logs simply
because the former does not have any overlapping lifecycle, and for the latter both SM
and SM2.0 produced the same model, which was analysed in previous studies [4, 6, 5].

Table 2 displays the characteristics of the event logs, highlighting their variety, with
logs containing short to long traces (length 2 to 1,230), a wide range of distinct traces
(0.28% to 96.55%) and distinct events (6 to 80), as well as notable differences in the
total number of traces (37 to 70,512) and events (1,156 to 830,522). The lifecycle in-
formation for each activity recorded in these event logs was complete, i.e. the start and
end events were recorded for each activity.

From each log, we discovered a process model with SM2.0, SM, and IM-lc, and
compared the quality of the discovered models over three quality measures: fitness,
precision, and simplicity. Several methods have been proposed for measuring fitness
and precision of an automatically discovered process model [15]. In this paper we use
two methods, the one proposed by Adriansyah et al. [1, 2] (alignment-based accuracy)
and the one proposed by Augusto et al. [4] (Markovian accuracy). As proxy for simplic-
ity we use the following three metrics [12]: Size – the total number of nodes of a process
model; Control-flow complexity (CFC) – the amount of branching induced by the split
gateways in the process model; Structuredness – the percentage of nodes located inside
a single-entry single-exit fragment of the process model.

We implemented SM2.0 as a Java command-line application,6 and we ran the exper-
iments on an Intel Core i7-8565U@1.80GHz with 32GB RAM running Windows 10
Pro (64-bit) and JVM 8 with 14GB of allocated RAM (10GB Stack and 4GB Heap).
All the discovery algorithms (SM, SM2.0, and IM-lc) were executed using their default
input parameters, and we set a timeout of 30 minutes for each algorithm execution and
for each measurement.

5 http://www.promtools.org/prom6/downloads/example-logs.zip
6 Available as “Split Miner 2.0” at http://apromore.org/platform/tools
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Event Total Distinct Total Distinct Trace Length
Log Traces Traces Events Events MIN AVG MAX
L1 28,504 2.64% 443,862 23 4 15 1230
L2 3,885 9.11% 15,096 6 2 3 60
L3 954 10.80% 13,740 18 6 14 46
L4 37 86.49% 1,156 18 22 31 36
L5 146 78.08% 3,764 18 2 25 84
L6 551 96.55% 19,174 80 2 34 126
L7 70,512 0.28% 830,522 8 4 11 40
L8 9,906 2.19% 9,906 26 6 44 354
L9 1,182 92.81% 46,282 9 12 39 276

L10 608 11.51% 18,238 21 4 2 88
L11 1,214 20.18% 11,226 12 4 9 58

R-Log 1,104 5.53% 15,468 8 6 14 30

Table 2: Descriptive statistics of the logs.

4.2 Results

Table 3 reports the fitness, precision, and simplicity measurements. Due to space limits,
the table does not show the measurements for IMfa because they were either equal or
worse than those for IM-lc, with the exception of those obtained on L9 (which reported
a slight improvement).

We can observe that SM2.0 is less prone to discovering unsound models than SM,
with the latter discovering an unsound model every three and the former only discov-
ering sound models. This achievement reflects the effectiveness of our heuristics for
removing improper completion.

In terms of accuracy, the results obtained with the alignment-based accuracy and the
Markovian accuracy are partially consistent in line with previous findings [4]. In fact,
the two measuring methods agree on the best models in terms of fitness, precision, and
F-score, respectively 100%, 66%, and 75% of the times.

As for fitness, IM-lc outperforms both SM and SM2.0 as expected [5]. In terms of
precision and F-score SM2.0 and SM achieve the highest scores, with SM2.0 performing
better than SM, most of the times discovering more precise and fitting process models
ultimately achieving a higher F-score. In fact, SM2.0 accuracy scores are either higher
than or equal to those of SM, the latter outperforming the former in fitness or precision
only two times according to the alignment-based accuracy, and only three times accord-
ing to the Markovian accuracy. Compared to IM-lc, SM2.0 discovers eleven times more
precise process models, indipendently of the measurement method.

As for simplicity, SM2.0 stands out by producing smaller models than those discov-
ered by both SM and IM-lc (9 times out of 12) and with a lower CFC (10 times out
of 12). However, SM2.0 and SM cannot systematically produce fully-structured process
models as opposed to IM-lc which achieves this by design. Lastly, the execution times
of IM-lc, SM, and SM2.0 are negligible: all the process models were discovered within
a minute (except for log L7, where IM-lc timed out).

Figure 6 shows two qualitative examples of the improvements yielded by SM2.0.
Considering the models from the L6 log (Figures 6a and 6b), SM2.0 discovered the
inclusive-OR relations between several activities of the process and removed the im-
proper completion, while SM produced an unsound model. In the specific case of the
L6 log, we also had the chance to validate the discovered model with the process ana-
lysts of the organization this log was extracted from, who confirmed that the activities
were indeed in an inclusive-OR relation. Considering the models from the R-log (Fig-
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Event Discovery Alignment Accuracy [1, 2] Markovian Accuracy [4] Simplicity
Log Approach Fitness Precision F-score Fitness Precision F-score Size CFC Struct.

IM-lc 0.88 0.78 0.83 0.82 0.15 0.25 40 26 1.00
L1 SM 0.98 0.94 0.96 0.96 0.44 0.60 47 32 0.47

SM2.0 0.83 0.97 0.90 0.44 0.34 0.38 45 25 0.56

IM-lc 0.87 0.44 0.59 0.53 0.14 0.22 20 11 1.00
L2 SM 0.92 1.00 0.96 0.69 0.88 0.77 14 6 1.00

SM2.0 0.92 1.00 0.96 0.69 0.88 0.77 14 6 1.00
IM-lc 0.98 0.71 0.82 0.88 0.08 0.14 49 27 1.00

L3 SM 0.96 0.97 0.96 0.72 0.41 0.52 36 16 0.58
SM2.0 0.93 0.99 0.96 0.40 0.07 0.12 31 10 0.77

IM-lc 0.98 0.41 0.57 1.00 0.06 0.12 35 12 1.00
L4 SM 0.84 1.00 0.91 0.45 0.79 0.57 26 6 0.46

SM2.0 0.94 0.66 0.78 0.93 0.08 0.15 25 3 1.00
IM-lc 0.83 0.53 0.65 0.90 0.17 0.29 33 12 1.00

L5 SM unsound unsound 31 11 0.45
SM2.0 0.76 0.79 0.78 0.86 0.19 0.31 27 3 0.59

IM-lc measurements timeout 0.10 0.00 0.01 126 78 1.00
L6 SM unsound unsound 161 98 0.14

SM2.0 0.70 0.66 0.68 0.31 0.23 0.26 138 80 0.50

IM-lc discovery timeout discovery timeout discovery timeout
L7 SM 0.88 1.00 0.94 0.73 0.90 0.81 12 2 1.00

SM2.0 0.88 1.00 0.94 0.73 0.90 0.81 12 2 1.00
IM-lc 0.85 0.40 0.55 0.87 0.03 0.06 61 39 1.00

L8 SM unsound unsound 160 118 0.02
SM2.0 0.77 0.76 0.77 0.38 0.33 0.35 46 26 0.70

IM-lc 0.94 0.26 0.41 0.92 0.43 0.58 23 11 1.00
L9 SM unsound unsound 17 5 0.53

SM2.0 0.57 0.91 0.70 0.28 0.45 0.35 17 5 0.47

IM-lc 0.95 0.75 0.84 0.98 0.15 0.26 31 8 1.00
L10 SM 0.77 1.00 0.87 0.95 0.93 0.94 29 6 1.00

SM2.0 0.77 1.00 0.87 0.95 0.93 0.94 29 6 1.00
IM-lc 0.91 0.75 0.82 0.45 0.14 0.22 36 21 1.00

L11 SM 0.83 0.90 0.87 0.29 0.26 0.28 44 28 0.16
SM2.0 0.84 0.90 0.87 0.06 0.33 0.10 22 11 0.59

IM-lc 0.99 0.98 0.99 1.00 0.96 0.98 16 5 1.00
R-Log SM 0.91 0.99 0.95 0.45 0.83 0.59 14 4 0.36

SM2.0 0.98 0.97 0.98 0.94 0.98 0.96 16 5 0.50

Table 3: Experiment results.
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ures 6c and 6d), only SM2.0 discovers the concurrency relations between its activities,
while SM mixes us the concurrency relations with loops.

(a) SM model discovered from L6.

(b) SM2.0 model discovered from L6.

(c) SM model discovered from R-Log.

(d) SM2.0 model discovered from R-Log.

Fig. 6: Models discovered by SM and SM2.0 from the L6 and R-Log.

5 Conclusion

In this paper, we presented Split Miner 2.0 (SM2.0), an extension of Split Miner (SM) [6]
that exploits the activities’ start and end timestamps recorded in an event log to discover
true concurrency and inclusive choice relations between activities. This is achieved by
redesigning the discovery of a directly-follows graph from an event log, adapting the
concurrency notion of Van der Werf et al. [18], and introducing an intuitive heuristic
to identify inclusive relations. Furthermore, given that SM cannot guarantee sound pro-
cess models, we designed an heuristic that reduces the chances of discovering process
models exhibiting improper completion. The empirical evaluation shows that SM2.0 can
discover more concurrent relations than SM, remove improper completion, and identify
OR-splits, while preserving SM’s model accuracy and reducing the complexity.

Although several studies have investigated the problem of automated process dis-
covery from event logs [5], most of them operate on simple event logs with only three
attributes: case id, timestamp, and activity label. Future research work in this area may
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focus on designing more sophisticated automated process discovery algorithms that can
discover more complex BPMN process models by leveraging additional information
that may be available in real-life event logs. Another direction for future work is to de-
sign accuracy measures such as fitness and precision that go beyond simple control-flow
relations and include support for inclusive gateways, including the OR-join.

Acknowledgments. Research funded by the Australian Research Council (grant
DP180102839) and the Estonian Research Council (grant PRG887).
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Abstract. Process mining is a relatively new subject which builds a bridge be-
tween process modelling and data mining. An exclusive choice in a process 
model usually splits the process into different branches. However, in some pro-
cesses, it is possible to switch from one branch to another. The inductive miner 
guarantees to return sound process models, but fails to return a precise model 
when there are switch behaviours between different exclusive choice branches 
due to the limitation of process trees. In this paper, we present a novel extension 
to the process tree model to support switch behaviours between different 
branches of the exclusive choice operator and propose a novel extension to the 
inductive miner to discover sound process models with switch behaviours. The 
proposed discovery technique utilizes the theory of a previous study to detect 
possible switch behaviours. We apply both artificial and publicly-available da-
tasets to evaluate our approach. Our results show that our approach can improve 
the precision of discovered models by 36% while maintaining high fitness values 
compared to the original inductive miner. 

Keywords: Process Discovery, Complex Behaviours Detection, Switch Behav-
iours, Inductive Miner, Process Trees. 

1 Introduction 

Process mining is useful for analyzing business processes along with improving and 
predicting which contains three parts – process discovery, conformance checking and 
process enhancement [1]. The most critical part of process mining is process discovery, 
which aims at extracting insight of the system workflow from real data. The resulting 
process model should not only have a high fitness value, but also be an accurate repre-
sentation of the real process [2]. The inductive miner is one of the leading process dis-
covery algorithms which can guarantee to produce sound process models within finite 
time [1, 3]. Given the direct outcome of the inductive miner is a process tree [3], the 
behaviours being represented are limited. When giving complex event logs as input, the 
inductive miner often returns so-called “flower models” which preserve high fitness but 
have very low precision values [3, 4]. Although we can still replay the majority of traces 
on the process model, “flower models” fail to represent real processes accurately and 
precisely [1, 2]. 

mailto:qche8411%7d@uni.sydney.edu.au
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When dealing with an exclusive decision choice in a process model, the decision 
point is split into multiple branches [5]. However, in many real-life processes, it can be 
possible to switch between branches after a decision has been made. Although the in-
ductive miner is known to be useful in generating sound models from data, it fails to 
discover an accurate model when switch behaviours exist.  

In this paper, we propose a novel extension to the process tree model to handle switch 
behaviours between different exclusive choice branches. We then develop a novel ex-
tension to the inductive miner to discover sound process models with switch behaviours 
based on the theory in [6]. From a broader perspective, our proposed method not only 
guarantees to produce sound process models but also not being limited to produce 
block-structured process models. We apply both artificial and publicly-available da-
tasets to evaluate our approach. Fitness, precision and F-score [4, 7] are used to measure 
the accuracy of resulting models, size (the number of nodes) and CFC (the number of 
branching caused by split gateways) [8] are adopted to measure the model complexity.  

The rest of the paper is structured as follows: Section 2 is a literature review of re-
lated work. Section 3 introduces formal definitions of some terms. Section 4 introduces 
the extension to the process tree model and how to translate it into a workflow net. In 
Section 5, we describe our process discovery technique. The approach is evaluated in 
Section 6. We finally conclude our paper in Section 7.  

2 Background 

When modelling switch behaviours between different exclusive choice branches using 
Petri-nets, a hidden transition is needed since we cannot connect two places directly 
[6]. The classical alpha algorithm [9] cannot discover any hidden transitions. [6, 10] 
improve the classical alpha algorithm to allow the detection of invisible tasks. Although 
the alpha algorithms are not robust to noises and cannot guarantee to produce sound 
models. [6] proposes a heuristic for detecting invisible transitions between activities 
directly from event logs. If there is a hidden transition between two activities on differ-
ent exclusive choice branches, a switch behaviour is detected. 
 In reviewing other process discovery algorithms which can discover switch behav-
iours between different exclusive choice branches including the alpha algorithms with 
invisible tasks [6, 10], heuristics miners [11], genetic miners [12] and the ILP algorithm 
[13], none of them can guarantee to produce a sound process model. In addition, some 
of them cannot handle noises, thus, not suitable to be applied to real data. Although the 
split miner [7] can discover switch behaviours and guarantee to produce deadlock-free 
models. It still cannot guarantee to produce sound models as defined in [9], which de-
fines soundness as (a) safeness, (b) proper completion, (c) option to complete, (d) ab-
sence of dead tasks. 

The inductive miners are a family of process discovery algorithms which utilize the 
divide-and-conquer approach in the field of process discovery [3, 14-18]. The inductive 
miners recursively divide the activities into different partitions and split event logs until 
base cases are touched. The direct outcomes of the inductive miners are process trees, 
which can be easily translated into equivalent block-structured workflow nets [3]. An 
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important feature of the inductive miner family is that the resulting model is always 
sound regardless of the input log. However, process trees also limit the behaviours 
which can be represented. For example, they fail to represent switch behaviours be-
tween exclusive choice branches. 
 When the given event log is complex, the inductive miner [3] can easily return a 
“flower model” with high fitness but low precision. [14] removes infrequent relations 
between activities before partitioning the activities. However, according to the bench-
mark in both [4] and [7]. The inductive miner infrequent (IMf) in [14] still returns mod-
els with low precision values compared with other algorithms. [19] tries to solve the 
problem by giving duplicate labels to the same activity when a local “flower model” is 
returned. The algorithm successfully improves the precision of the outcome models but 
leads to longer execution time. Besides, if we apply the algorithm in [19] with the in-
ductive miners, the outcome models are still block-structured workflow nets. 
 The process mining framework in the original inductive miner [3] allows researchers 
to define their ways to partition activities and customized process tree semantics. For 
example,  [17] puts lifecycle information into the process discovery to distinguish “in-
terleaving” behaviours from “parallel” behaviours. [18] defines new operators on the 
process tree and uses the inductive miner to discover cancellation behaviours. 

3 Preliminaries 

In this section, we present some formal definitions which will be used in this paper. For 
process trees and block-structured workflow nets, we refer to [3], for soundness of Pe-
tri-nets, we refer to [9]. Besides, for IWF-net (workflow nets with invisible tasks), 
DIWF-net (a subset of IWF-nets) and log completeness, we refer to [6]. For clarifica-
tion, in this paper, we use “X” to represent the exclusive choice operator, “→” to rep-
resent the sequence operator, “⋀” to represent the parallel operator and “↺” to represent 
the loop operator in the process tree [3]. 

 
Definition 1 (Relations between activities). Let L be an event log of a workflow net 
N, let 𝑎𝑎, 𝑏𝑏 be two activities in L. Then: 

1. 𝑎𝑎 >𝐿𝐿 𝑏𝑏 if there is a trace 𝑡𝑡 ∈ 𝐿𝐿 where t = <……, 𝑎𝑎, 𝑏𝑏, …… >, 
2. 𝑎𝑎 ~𝐿𝐿 𝑏𝑏 if there is a trace 𝑡𝑡 ∈ 𝐿𝐿 where t = <……, 𝑎𝑎, 𝑏𝑏, 𝑎𝑎,  …… >, and there 

is a trace 𝑡𝑡 ∈ 𝐿𝐿 where t = <……, 𝑏𝑏, 𝑎𝑎, 𝑏𝑏,  …… >, 
3. 𝑎𝑎 →𝐿𝐿 𝑏𝑏 if 𝑎𝑎 >𝐿𝐿 𝑏𝑏 ⋀  (𝑏𝑏  ≯𝐿𝐿  𝑎𝑎 ⋁ 𝑎𝑎 ~𝐿𝐿 𝑏𝑏), 
4. 𝑎𝑎 ||𝐿𝐿𝑏𝑏 if 𝑎𝑎 >𝐿𝐿 𝑏𝑏 ⋀ 𝑏𝑏 >𝐿𝐿 𝑎𝑎 ⋀ 𝑎𝑎 ≁𝐿𝐿 𝑏𝑏. 

 
Definition 2 (Mendacious dependency) [6]. Let N = (P, 𝑇𝑇𝑣𝑣 ∪ 𝑇𝑇𝑖𝑖𝑖𝑖, F) be a potential 
sound IWF-net, 𝑇𝑇𝑣𝑣 is the set of visible tasks, 𝑇𝑇𝑖𝑖𝑖𝑖 is the set of invisible tasks. There is a 
mendacious dependency between activities 𝑎𝑎, 𝑏𝑏 in event log L, denoted as 𝑎𝑎 ⇝𝐿𝐿  𝑏𝑏, 
iff 𝑎𝑎 →𝐿𝐿 𝑏𝑏 ∧ ∃𝑥𝑥,𝑦𝑦 ∈ 𝑇𝑇𝑣𝑣: 𝑎𝑎 →𝐿𝐿 𝑥𝑥 ∧ 𝑦𝑦 →𝐿𝐿 𝑏𝑏 ∧ 𝑦𝑦 ≯𝐿𝐿 𝑥𝑥 ∧ 𝑥𝑥 ∦𝐿𝐿 𝑏𝑏⋀𝑎𝑎 ∦𝐿𝐿 𝑦𝑦. 
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4 The Switch Process Tree 

In this section, we formally define the switch behaviour and its corresponding repre-
sentation on the process tree. The switch process tree is a novel extension based on the 
process tree model described in [3].  
 
Definition 3 (First, Path function). Let 𝑛𝑛 be a leaf in a process tree, 𝑡𝑡𝑡𝑡 be an arbitrary 
operator type. First (𝑛𝑛, 𝑡𝑡𝑡𝑡) refers to the first ancestor node of 𝑛𝑛 with operator type 𝑡𝑡𝑡𝑡. 
For example, in the process tree shown in Fig. 1, First (Node 3, X) refers to the root 
node. First (𝑛𝑛, 𝑡𝑡𝑡𝑡) = ∅ if none of the ancestor nodes of 𝑛𝑛 has type 𝑡𝑡𝑡𝑡. Let 𝑛𝑛1,𝑛𝑛2 be two 
arbitrary nodes of a process tree, Path (𝑛𝑛1,𝑛𝑛2) refers to the path from 𝑛𝑛1 to 𝑛𝑛2 (exclud-
ing 𝑛𝑛1 and 𝑛𝑛2). Path (𝑛𝑛1,𝑛𝑛2) = ∅ if 𝑛𝑛2 is not reachable from 𝑛𝑛1 or 𝑛𝑛1 =  𝑛𝑛2. Referring 
back to Fig. 1, Path (Node 0, Node 8) = <Node 2>, Path (Node 1, Node 8) = ∅. 
 
Definition 4 (Switch process tree and switch behaviour). Assume a finite alphabet 
𝐴𝐴 of activities. A switch process tree is a normal process tree with switch leaf operators 
𝑎𝑎 ⇒ 𝐵𝐵 where 𝑎𝑎 ∈ 𝐴𝐴, 𝐵𝐵 ⊂ 𝐴𝐴. Combined with an exclusive choice operator X, the novel 
leaf node denotes the place we execute activity 𝑎𝑎, and have an option to switch to one 
of the activities in set 𝐵𝐵 on another branch of an exclusive choice operator. 𝑎𝑎 ⇒ 𝑏𝑏 is a 
switch behavior if there exists 𝑎𝑎 ⇒ 𝐵𝐵  such that 𝑏𝑏 ∈ 𝐵𝐵 , we call 𝑎𝑎  the source of the 
switch behavior, 𝑏𝑏 the destination of the switch behaviour. To ensure the process model 
is still sound, we define the constraints below: 

1. The activities on different sides of a switch leaf node must be put on different 
branches of an exclusive choice operator X, i.e. we can only switch execution 
rights from one exclusive choice branch to another. 

2. If there exists a leaf operator 𝑎𝑎 ⇒ 𝐵𝐵 in the process tree, then ∀ 𝑏𝑏 ∈ 𝐵𝐵, First 
(𝑎𝑎 ⇒ 𝐵𝐵, ⋀) = First (𝑏𝑏, ⋀),  and if First (𝑎𝑎 ⇒ 𝐵𝐵, ⋀) = First (𝑏𝑏, ⋀) ≠ ∅, then Path 
(First (𝑎𝑎 ⇒ 𝐵𝐵, ⋀), 𝑎𝑎 ⇒ 𝐵𝐵) ⋂ Path (First (𝑏𝑏, ⋀), 𝑏𝑏) ≠ ∅. i.e. we cannot switch 
out of a parallel branch. 

 
Fig. 1. An example switch process tree and its corresponding workflow net 

Fig. 1 shows an example switch process tree and its corresponding workflow net. 
There are three possible traces in the model, which are <A, B, C>, <D, E, F> and <A, 
B, E, F>.  

 
Definition 5 (Translating switch process trees into workflow nets). Translating a 
switch process tree into a workflow net is straightforward. We first ignore the switch 
leaf nodes and translate the process tree into a block-structured workflow net. Then we 
connect the activities on different sides of the switch operators using hidden transitions. 
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Suppose 𝑇𝑇𝑇𝑇 is a switch process tree, 𝑆𝑆 is the set of all the switch leaf nodes in 𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇∗ 
is an equivalent process tree of 𝑇𝑇𝑇𝑇 but all the switch behaviours are removed, i.e., for 
all the  𝑎𝑎 ⇒ 𝐵𝐵 ∈ 𝑆𝑆 in 𝑇𝑇𝑇𝑇, we convert them into 𝑎𝑎 in 𝑇𝑇𝑇𝑇∗. 𝑁𝑁 = (𝑃𝑃, 𝑇𝑇𝑣𝑣 ∪ 𝑇𝑇𝑖𝑖𝑖𝑖 , 𝐹𝐹)  is a 
block-structured workflow net corresponding to 𝑇𝑇𝑇𝑇∗. For each 𝑎𝑎 ⇒ 𝐵𝐵 ∈ 𝑆𝑆 and 𝑏𝑏 ∈ 𝐵𝐵, 
we create a new invisible task 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ into set 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐ℎ, then: 

1.  If |𝑎𝑎 ∙ | = 1 in N,  𝑝𝑝𝑎𝑎−𝑜𝑜𝑜𝑜𝑜𝑜= 𝑎𝑎 ∙,   | ∙ 𝑝𝑝𝑎𝑎−𝑜𝑜𝑜𝑜𝑜𝑜\𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ| = 1, then we add a new arc 
𝑓𝑓 into 𝑁𝑁, 𝑓𝑓 = (𝑝𝑝𝑎𝑎−𝑜𝑜𝑜𝑜𝑜𝑜, 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ). 

2. If |∙ 𝑏𝑏| = 1, 𝑝𝑝𝑏𝑏−𝑖𝑖𝑖𝑖= ∙ 𝑏𝑏, |𝑝𝑝𝑏𝑏−𝑖𝑖𝑖𝑖 ⋅\𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ| = 1, then we add a new arc 𝑓𝑓 into 𝑁𝑁, 
𝑓𝑓 = (𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ, 𝑝𝑝𝑏𝑏−𝑖𝑖𝑖𝑖). 

3. If |𝑎𝑎 ∙ | = 1 in N,  𝑝𝑝𝑎𝑎−𝑜𝑜𝑜𝑜𝑜𝑜= 𝑎𝑎 ∙, | ∙ 𝑝𝑝𝑎𝑎−𝑜𝑜𝑜𝑜𝑜𝑜\𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ| > 1, we first delete the arc 𝑓𝑓1 
= (𝑎𝑎, 𝑝𝑝𝑎𝑎−𝑜𝑜𝑜𝑜𝑜𝑜) from N, then we create another new invisible task 𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  and 
place 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  into N. We finally add arcs 𝑓𝑓2  = (𝑎𝑎 , 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ), 𝑓𝑓3  = (𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , 
𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), 𝑓𝑓4 = (𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑝𝑝𝑎𝑎−𝑜𝑜𝑜𝑜𝑜𝑜) and 𝑓𝑓5 = (𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ). 

4. If |∙ 𝑏𝑏| = 1 , 𝑝𝑝𝑏𝑏−𝑖𝑖𝑖𝑖= ∙ 𝑏𝑏 , |𝑝𝑝𝑏𝑏−𝑖𝑖𝑖𝑖 ⋅\𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ|  > 1, we first delete the arc 𝑓𝑓1  = 
(𝑝𝑝𝑏𝑏−𝑖𝑖𝑖𝑖, b) from N, then we create another new invisible task 𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  and place 
𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  into N. We finally add arcs 𝑓𝑓2 = (𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , 𝑏𝑏), 𝑓𝑓3 = (𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), 
𝑓𝑓4 = (𝑝𝑝𝑏𝑏−𝑖𝑖𝑖𝑖 , 𝑡𝑡𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) and 𝑓𝑓5 = (𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ , 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏). 

5. If |𝑎𝑎 ∙ | > 1, there is a “and split” after 𝑎𝑎. We add a new invisible task 𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  
after 𝑎𝑎 as the split point and then go back to step 1, i.e., |𝑎𝑎 ∙ | = 1, |𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ | 
> 1, 𝑎𝑎 ∙∩∙ 𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒 ≠ ∅.  

6. If | ⋅ 𝑏𝑏| > 1, there is a “and join” before 𝑏𝑏. We add a new invisible task 𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  
before 𝑏𝑏 as the joining point and then go back to step 1, i.e., | ∙ 𝑏𝑏| = 1, | ∙
𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏| > 1, ∙ 𝑏𝑏 ∩ 𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙≠ ∅.  
 

To illustrate the translation process, we use three examples translated from the above 
different scenarios in Fig. 2 - Fig. 4: 

 

 
Fig. 2. An example translation from a switch process tree to a workflow net (Definition 5, case 
1, 2).  

Fig. 3. An example translation from a switch process tree to a workflow net (Definition 5, case 
3, 4).  
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Fig. 4. An example translation from a switch process tree to a workflow net (Definition 5, case 
5).  

 
Theorem 1. If we translate a switch process tree into a workflow net, the resulting 
workflow net is always sound if the constraints in Definition 4 are all satisfied. 
 
Proof. Assume we ignore all the switch behaviours in the process tree during the trans-
lation, according to [3], we can get an equivalent sound block-structured workflow net. 
According to Definition 5, each switch invisible transition is always connected to one 
single input place and one single output place. The translation process does not increase 
the number of input/output places of any transitions. As a result, it is free for a token in 
the model to choose whether firing a switch invisible transition or not. Thus, the result-
ing process model will not contain dead tasks and is always safe. In addition, since the 
original block-structured workflow net is sound, if we move a token from one exclusive 
choice branch to another one, the process can still be completed properly as long as we 
don’t move the token out of a parallel branch. Thus, if the constraints in Definition 4 
are all satisfied, the resulting workflow net is always sound. 

5 Discovering Switch Process Trees 

In [6], researchers define the prime invisible tasks into SKIP, REDO, SWITCH, 
INITIALIZE and FINALIZE where SWITCH refers to switching execution rights be-
tween alternative branches. Thus, the SWITCH invisible tasks can be used to represent 
the switch behaviours we define in Section 4. Researchers in [6] prove that given L is 
a complete event log of a sound DIWF-net N = (P, 𝑇𝑇𝑣𝑣 ∪ 𝑇𝑇𝑖𝑖𝑖𝑖, F), if 𝑎𝑎, 𝑏𝑏 ∈  𝑇𝑇𝑣𝑣 are two 
visible tasks, then there is a prime invisible task 𝑡𝑡 ∈  𝑇𝑇𝑖𝑖𝑖𝑖 between 𝑎𝑎 and b, i.e., 𝑎𝑎 ⋅∩⋅
𝑡𝑡 ≠ ∅ and 𝑡𝑡 ⋅∩⋅ 𝑏𝑏 ≠ ∅ iff 𝑎𝑎 ⇝𝐿𝐿  𝑏𝑏. Although the scope of the proof is limited, the eval-
uation of [6] shows that the power of the theory is not limited to complete logs of 
DIWF-nets. More importantly, [6] provides us with a heuristic to predetermine possible 
invisible tasks between activities from event logs directly. Suppose we know two ac-
tivities are on two different exclusive choice branches and there is an invisible task 
between them, then we know there is a switch behaviour between the two activities.  

To discover switch process trees using the inductive miner, we extend the normal 
exclusive choice cut of the inductive miner framework to a switch exclusive choice cut. 
In this section, we show the switch exclusive choice cut step by step. To illustrate the 
process, we use a complete log of the example model presented in Fig. 2 𝐿𝐿1 = <
𝐴𝐴,𝐵𝐵,𝐶𝐶 >, < 𝐷𝐷,𝐸𝐸,𝐹𝐹 >, < 𝐴𝐴,𝐵𝐵,𝐸𝐸,𝐹𝐹 > as a running example. To make sure we detect 
all the switch behaviours, we put the switch exclusive choice cut before the other three 
cuts in each iteration. The extended IM framework is shown in Algorithm 1. 
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Algorithm 1. The extended IM framework augumented with switch behaviours 
 Input: An event log 𝐿𝐿 
 Output: A Switch Process Tree 𝑇𝑇𝑇𝑇 
 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝐿𝐿) 
1     If 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐿𝐿) ! =  𝜙𝜙 Then Return 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐿𝐿) 
2     Else 
3         (𝑐𝑐𝑐𝑐𝑐𝑐, (Σ1, … , Σ𝑘𝑘 ), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝐺𝐺(𝐿𝐿),𝐿𝐿) 
4         If 𝑘𝑘 ≤ 1 Then �𝑐𝑐𝑐𝑐𝑐𝑐, (Σ1, … , Σ𝑘𝑘 )� = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐺𝐺(𝐿𝐿)) //cut in the original IM 
5         If 𝑘𝑘 ≤ 1 Then �𝑐𝑐𝑐𝑐𝑐𝑐, (Σ1, … , Σ𝑘𝑘 )� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺(𝐿𝐿)) //cut in the original IM 
6         If 𝑘𝑘 ≤ 1 Then �𝑐𝑐𝑐𝑐𝑐𝑐, (Σ1, … , Σ𝑘𝑘 )� = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐺𝐺(𝐿𝐿)) //cut in the original IM 
7         If 𝑐𝑐𝑐𝑐𝑐𝑐 =  𝜙𝜙 Then Return 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ(𝐿𝐿) //function in the original IM 
8     𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿) 
9     (𝐿𝐿1, … ,𝐿𝐿𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐿𝐿, (𝑐𝑐𝑐𝑐𝑐𝑐, (Σ1, … , Σ𝑘𝑘 ))) //function in the original IM 
10     If 𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 Then 
11         𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐿𝐿1, … , 𝐿𝐿𝑘𝑘) 
12             If 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ! = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 Then 
13                  (𝑐𝑐𝑐𝑐𝑐𝑐, (Σ1, … , Σ𝑘𝑘 )) = 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋(𝐺𝐺(𝐿𝐿),𝐿𝐿) //Exclusive choice cut of the original IM 
14                 If 𝑘𝑘 ≤ 1 Then �𝑐𝑐𝑐𝑐𝑐𝑐, (Σ1, … , Σ𝑘𝑘 )� = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐺𝐺(𝐿𝐿)) //cut in the original IM 
15                 If 𝑘𝑘 ≤ 1 Then �𝑐𝑐𝑐𝑐𝑐𝑐, (Σ1, … , Σ𝑘𝑘 )� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺(𝐿𝐿)) //cut in the original IM 
16                 If 𝑘𝑘 ≤ 1 Then �𝑐𝑐𝑐𝑐𝑐𝑐, (Σ1, … , Σ𝑘𝑘 )� = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐺𝐺(𝐿𝐿)) //cut in the original IM 
17                 If 𝑐𝑐𝑐𝑐𝑐𝑐 =  𝜙𝜙 Then Return 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ(𝐿𝐿) //function in the original IM 
18                 (𝐿𝐿1, … ,𝐿𝐿𝑘𝑘) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐿𝐿, (𝑐𝑐𝑐𝑐𝑐𝑐, (Σ1, … , Σ𝑘𝑘 ))) //function in the original IM 
19     Return 𝑐𝑐𝑐𝑐𝑐𝑐(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐿𝐿1), … ,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐿𝐿𝑘𝑘)) 

 

5.1 The Switch Exclusive Choice Cut (Line 3) 

Step 1: Adding Artificial Start and End Activities 
According to Definition 5, if the source activity of a switch behaviour is at the end of 
an exclusive choice branch or if the destination activity of a switch behaviour is at the 
beginning of an exclusive choice branch, we need to add an extra invisible task before 
the destination activity or after the source activity to represent the process precisely. 
However, the process model is no longer a DIWF-net after adding the extra invisible 
task according to [6], so we may fail to detect an invisible task between the two activi-
ties using the mendacious dependency. 

To solve the problem, before a switch cut, we first identify all the start and end ac-
tivities in the event log and add a unique start and end activity to each of them. For 
example, after adding artificial activities into 𝐿𝐿1 , we get  𝐿𝐿1∗ = <
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝐴𝐴,𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐸𝐸𝐸𝐸𝑑𝑑𝐶𝐶 >, < 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝐷𝐷,𝐷𝐷,𝐸𝐸,𝐹𝐹,𝐸𝐸𝐸𝐸𝑑𝑑𝐹𝐹 >, < 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝐴𝐴,𝐴𝐴,𝐵𝐵,𝐸𝐸,𝐹𝐹,𝐸𝐸𝐸𝐸𝑑𝑑𝐹𝐹 >.   

Step 2: Calculating All the Mendacious Dependencies Between Activities 
We then go through the event log and identify all the mendacious dependencies. Be-
sides, we ignore all the mendacious dependencies containing artificial start and end 
activities. After the mendacious dependencies are identified, we delete all the artificial 
start and end activities. 

In our example, we get one mendacious dependency, which is 𝐵𝐵 ⇝𝐿𝐿  𝐸𝐸. 
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Step 3: Finding Switch Exclusive Choice Cut and Switch Leaf Operators 
Firstly, if there is a mendacious dependency between two activities in the directly-fol-
lows graph, we replace the edge between them with an invisible edge. 

 
Definition 6 (Invisible edge). Given 𝐺𝐺(𝐿𝐿) is a directly-follows graph of event logs L, 
𝐴𝐴 is the set of activities in L. 𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴, there is an invisible edge from 𝑎𝑎 to 𝑏𝑏 in 𝐺𝐺(𝐿𝐿) 
iff 𝑎𝑎 ⇝𝐿𝐿  𝑏𝑏. 
 
Definition 7 (Switch exclusive choice cut). Suppose 𝐸𝐸 is the set of all edges in 𝐺𝐺(𝐿𝐿), 
𝐸𝐸∗ is the set of all invisible edges. A switch exclusive choice cut is a cut Σ1, Σ2, … , Σ𝑛𝑛 
of a directly-follows graph 𝐺𝐺(𝐿𝐿) such that: 

1. There are only invisible edges between Σ1≤𝑖𝑖≤𝑛𝑛 and Σ1≤𝑗𝑗≤𝑛𝑛. 
∀𝑖𝑖 ≠ 𝑗𝑗 ⋀ 𝑎𝑎𝑖𝑖 ∈ Σ𝑖𝑖  ⋀ 𝑎𝑎𝑗𝑗 ∈ Σ𝑗𝑗: (𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑗𝑗) ∉ 𝐸𝐸\𝐸𝐸∗ 

 

 
Fig. 5. Switch exclusive choice cut for 𝐿𝐿1 

If an invisible edge is cut during the switch exclusive choice cut, i.e., ∃𝑎𝑎𝑖𝑖 ∈ Σ𝑖𝑖 , 𝑎𝑎𝑗𝑗 ∈
Σ𝑗𝑗: (𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑗𝑗) ∈ 𝐸𝐸∗, then a new switch behaviour 𝑎𝑎𝑖𝑖 ⇒  𝑎𝑎𝑗𝑗 is discovered. By merging all 
the switch behaviours with the same source together in the end, we can get switch leaf 
operators. 

Step 4: Removing Traces with Switch Behaviours 
We use the same exclusive choice cut split function as the inductive miner infrequent 
[14] to split the event logs after an exclusive choice switch cut. A problem here is split-
ting the event log could cause extra “skip” behaviours. In our running example, since 
we partitioned the activities into two groups which are {𝐴𝐴,𝐵𝐵,𝐶𝐶} and {𝐷𝐷,𝐸𝐸,𝐹𝐹}, the trace 
<A, B, E, F> will be projected into either <A, B> or <E, F>. The options will either 
produce an extra end activity B or an extra start activity E in the local sub-process. To 
resolve the issue, we consider deleting the traces with switch behaviours before splitting 
the log. For example, we delete <A, B, E, F> from 𝐿𝐿1 before splitting the log. However, 
deleting traces increases the requirement of log completeness, which may cause the loss 
of activities or behaviours when dealing with real-life data. We decide to make the 
option adjustable. 

 

Fig. 6. The resulting model of 𝐿𝐿1 with the deleting traces option off (left) and on (right), there is 
one more extra trace <A, B> on the left graph. 
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5.2 Verifying the Exclusive Choice Switch Cut (Line 10 - 18) 

Performing the switch exclusive choice cut and splitting the event log may cause un-
necessary loss of activities. Every time after we perform the switch exclusive choice 
cut and split the event log, we check if the total number of activities changes. If there 
is a change in the number of activities (line 12), we abort the whole cut, redo the log 
split and disable the exclusive choice cut in the next iteration (line 13). We enable the 
exclusive choice cut again after the current log has been split into sub logs. 

5.3 Removing Incorrect Switch Behaviours 

Although we can identify switch behaviours during the exclusive choice cut, we are 
unable to determine if the constraints in Definition 4 are met before the whole process 
tree has been constructed. To ensure a sound model is returned, we iterate through the 
whole process tree at the end and delete any switch behaviours which violate the con-
straints defined in Definition 4. 

6 Evaluation 

We implement our approach on the inductive miner directly in the ProM framework 
[20]. Our code and evaluation results are available at 
https://github.com/bearlu1996/switch. We applied both artificial and publicly-available 
event data to evaluate our algorithm. Fitness and precision are used to evaluate the ac-
curacy of our process models. Besides, we use the formula in [4] and [7] to calculate 
F-score, i.e., 𝐹𝐹 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
. CFC (the number of branching caused 

by split gateways) [8] and size (the number of nodes) are also used to evaluate the 
complexity of our process models. For replicable purposes, we use “Replay a log on 
Petri net for conformance analysis” in ProM to calculate fitness, “Check Precision 
based on Align-ETConformance” to calculate the precision. We use “Calculate BPMN 
Metrics” to calculate model complexity. In addition, the tools in the “BPMN Miner” 
are used to covert between Petri-nets and BPMNs. We use default settings for all the 
parameters. 

6.1 Evaluation Using Artificial Data 

We first use several artificial logs with switch behaviours to demonstrate the perfor-
mance of our approach. When applying the original inductive miner on these logs, it 
fails to discover precise models. Instead, “flower” models with low precision are re-
turned. We show that after using our extension, we can get precise models.  

Table 1. Evaluation using artificial data 

 
Log: <A, B, C>, <D, E, F>, <A, F> 

https://github.com/bearlu1996/switch
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IM IM augmented with switch behaviours 

Fitness: 1.0, Precision: 0.38 Fitness: 1.0, Precision: 1.0 
Log: <A, B, C>, <D, E, F>, <A, E, F>, <D, E, C>, <A, E, C> 
IM IM augmented with switch behaviours 

Fitness: 1.0, Precision: 0.42 Fitness: 1.0, Precision: 1.0 
Log: <A, B, C>, <D, E, F>, <A, B, D, E, F> 
IM IM augmented with switch behaviours 

Fitness: 1.0, Precision: 0.94 Fitness: 1.0, Precision: 1.0 
Log: <A, B, C>, <D, E, F>, <D, E, C>, <A, F>, <A, C> 
IM IM augmented with switch behaviours 

Fitness: 1.0, Precision: 0.42 Fitness: 1.0, Precision: 0.97 

6.2 Evaluation Using Publically-Available Data 

We use a publicly-available dataset called “BPIC13-incident” from the “4TU Center 
for Research Data” to evaluate our algorithm. We use “Event name + lifecycle” as the 
activity classifier, the dataset contains 7554 traces, 2278 distinct traces, 65533 events 
and 13 distinct events. The average length of traces is 9 while the shortest length is 1 
and the longest length is 123. We combine our approach with the inductive miner in-
frequent (IMf) [14] and switch off the “delete trace” option, we also compare our results 
with the split miner (SM) [7]. In addition, we use default settings for all the parameters. 
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Table 2. Evaluation results with the publicly-available dataset (IMs refers to our approach) 

 Accuracy Complexity 
 Fitness Precision F-Score Size CFC 

IMf 0.95 0.59 0.73 35 33 
SM 0.98 0.71 0.82 39 48 
IMs 0.97 0.80 0.88 33 46 

 
Evaluation results are presented in Table 2. All three methods can produce a model 

with high fitness. However, the IMf returns a model with low precision. Our approach 
rises the precision of IMf by 36%. In addition, our approach returns a model with both 
higher precision and F-score than the split miner. For the model complexity, our ap-
proach also achieves both smaller size and CFC than the split miner. 

7 Discussion and Conclusion 

In this paper, we present an extension to both the inductive miner and the process tree 
model. We allow the inductive miner to discover sound process models but not being 
limited to block-structured workflow nets. The evaluation results show that our ap-
proach can reduce the chance for the inductive miner to return flower models. Besides, 
in our evaluation, our approach can also discover models that are comparable in terms 
of both model accuracy and complexity to these produced by the split miner. 

One limitation is that when performing the switch exclusive choice cut, we do not 
know if the switch behaviour is valid or not, thus we need to check the validity of the 
switch behaviours to make sure the model is still sound in the end. It has to be noted 
that the fitness of resulting models might be reduced if too many switch behaviours are 
removed. We aim to develop better algorithms to repair the models in the future. Be-
sides, as shown in the artificial data evaluation, when the same place is both the input 
and output of two switch invisible transitions, there might be redundant hidden transi-
tions in the model, future work is required to remove these redundant hidden transitions. 

Finally, we also aim to conduct more experiments to evaluate the performance of 
our approach in the future, including the impacts of different orders of cuts.  
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Abstract. Virtually all techniques, developed in the area of process
mining, assume the input event data to be discrete, and, at a relatively
high level (i.e., close to the business-level). However, in many cases, the
event data generated during the execution of a process is at a much lower
level of abstraction, e.g., sensor data. Hence, in this paper, we present a
novel technique that allows us to translate sensor data into higher-level,
discrete event data, thus enabling existing process mining techniques to
work on data tracked at a sensory level. Our technique discretises the
observed sensor data into activities by applying unsupervised learning in
the form of clustering. Furthermore, we refine the observed sequences by
deducing imperative sub-models for the observed discretised data, i.e.,
allowing us to identify concurrency and interleaving within the data. We
evaluated the approach by comparing the obtained model quality for
several clustering techniques on a publicly available data-set in a smart
home scenario. Our results show that applying our framework combined
with a clustering technique yields results on data that otherwise would
not be suitable for process discovery.

Keywords: Process mining · sensor data · event correlation · IoT.

1 Introduction

The rise of the Internet-of-Things (IoT), i.e., interconnected devices, mechanical
and digital machines, gradually digitalises the day-to-day operations of modern-
day enterprises. More-and-more devices are interconnected and store valuable
traces of behavioural data, generated during their interaction with humans, as
well as other interconnected devices. For example, consider the concepts of au-
tonomous production and the adoption of robotics in healthcare, in which opera-
tional processes are gradually digitised and automated, utilising interconnecting
and communicating devices and machines.
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Whereas the design of a single device, connected to a larger network of de-
vices, remains manageable (though it is complex in its own right), deficiencies in
inter-device communication or handover of work-packages, easily lead to global
process under-performance. Hence, a clear understanding of the general flow of
work, as well as an understanding of bottlenecks and synchronisation points is of
utmost importance to further improve the efficiency of the executed processes.
Process mining techniques aim to exploit behavioural data, stored in the in-
formation systems to support the execution of processes and to distil process
models [1]. In particular, they can derive-and-construct process models based on
tracked event data, i.e., in a completely automated fashion.

In general, process mining relies on discrete event data, typically assumed to
be tracked at the business level, i.e., the event data directly relates to high-level
business process concepts. However, often, the level at which the event data is
tracked within information systems is at a much lower level.

Possible application scenarios are settings where the movement of objects or
people (entities) is tracked by motion sensors, light barriers or similar types of
sensors that only detect absence and presence of a person or object and cannot
distinguish between different observed entities. Those sensors can be found in
smart home settings, smart factories and healthcare-related applications. If in
these possible settings, it is of interest to discover frequent behaviour patterns
or abnormal behaviour, our proposed method provides a novel approach that
translates sensory data, into a process model. In particular, unlabelled raw sen-
sor events are aggregated and clustered by an unsupervised learning technique
to identify activities through clusters of related event sequences. To identify the
activities, we discover a process model for each identified cluster. The activi-
ties, labelled by a domain expert, serve as input for process mining-based model
discovery, which allows to identify concurrent and interleaving behaviour in sen-
sor event data. We evaluate our approach on the publicly available CASAS
dataset [2] and compare two clustering methods. The obtained results show
promising results, hinting towards a better result by using clustering based on a
self-organising map (SOM) in comparison to basic k-means in this context based
on our methodology.

To the best of our knowledge, this paper suggests the first activity and pro-
cess discovery technique for unlabelled sensor event data using SOM as model
and addressing the challenges of concurrent behaviour between activities and
multiple residents.

The remainder of this paper is structured as follows. The next section presents
related work. Subsequently, section Section 3 presents our approach, which has
been evaluated using a real-life data-set. The evaluation is summarised in Sec-
tion 4. The paper concludes with an outlook on future work in Section 5.

2 Related Work

A large body of research exists that partially addresses the discovery of events
and activities at different levels (see Fig. 1). In the following we consider related
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approaches that use sensor data aiming to translate it into higher-level, discrete
event data or applying process mining on raw sensor data. Our focus of related
approaches also lays in smart homes as we used position data of smart home
sensors for evaluation.

Activity recognition in smart home has been widely addressed relying the
recognition on different sensor types like motion or video [3–5] or analysing
data from wearables [6] or reference sensors [7]. Recently, Deep Learning (DL)
methods for detecting and predicting activities in IoT environments have been
increasingly explored [8]. Unlike classical machine learning techniques, DL net-
works automatically derive features from the data and produce promising results
in different domains. Particularly in the field of smart homes or ambient as-
sisted living, there are first approaches that recognise activities based on sensor
event data [9–12]. Activity recognition is predominantly used for a situational
prognosis [13]. Also these kinds of approaches identify simple activities [14, 15].
Complex activities like people’s daily activities can only be identified using ex-
tra sensors [14,16]. Although our method for process model discovery from raw
location sensor data also requires a manual labelling of clusters of high-level
events, we believe that the process model view on raw sensor data advances
existing approaches and is beneficial in terms of evaluating the quality of data
aggregations, which DL-based approaches are not capable of.

Mapping low-level events to activities for process mining is still a chal-
lenge [17]. Leotta et al. [18] envision to use similar techniques as we employ:
however, only discuss challenges. The current status-quo is that approaches in-
dicate only likelihoods of mappings, since there is often more than one possible
solution [19]. Our approach for event aggregation in combination with unsuper-
vised learning aims to bridge this gap. Related literature for activity discovery
for process mining either use supervised techniques [6, 20] or visualise human
habits [21] in order to accurately identify activities. Some works exist that de-
tect activities from high-level events through unsupervised techniques [20,22,23],
which have been compared in this paper. These related works [20,22,23] use pat-
terns or local process models to aggregate event data towards higher abstraction
levels. But they did not allow to discover meaningful activities for our data set.
For unlabelled training sets, related approaches suggest to use a time-based label
refinement [24] or locations [25] as characteristics in order to segment the event
log and to abstract activities out of it. However, the methods already expects
particular representations of traces. Given our scenario, the application of local
process models did not allow to identify useful process fragments.

3 Translating Sensor Data to High-Level Traces

Our method for process model discovery from raw location sensor data assumes
a location sensor event log EL as input derived from a set of sensors S e.g.,
networks of WiFi-access points, or motion sensors in smart homes. We expect
events e ∈ EL to satisfy some minimal requirements: For each event we can re-
trieve a timestamp time(e) inducing a partial order on the events, a sensor label



4 D. Janssen et al.

Location Sensor 
Event Log

(𝐸!) 

Time Label Location
Data

… … …

… … …

… … …

Case Time Label Location
Data

1 … … …

1 … … …

2 … … …

Activity Instance Event Log (𝐸") 
Case Time Activity

Label
Activity
Instance

Activity
Life Cycle

1 … A 1 Start

1 … A 1 Complete

2 … … … …

Process Event Log (𝐸#) 

Process Activities (𝐴)
Activity

Label
Activity 

Behaviour

A

B

Process 
Model

Event/Case
Correlation1. Event/Activity

Abstraction3.
Ac

tiv
ity

 
D

is
co

ve
ry

2.

Event/Activity Abstraction3.

Process 
Discovery4.

Fig. 1: Process discovery approach for location sensor event data.

sensor(e) ∈ S indicating which sensor was activated and some form of informa-
tion that either implicitly or explicitly refers to a location (i.e., location(e) ∈ L).
The location information can be explicit in the form of coordinates (e.g., latitude,
longitude) or implicit by providing labelled locations together with a distance
function providing pairwise distances between them. Throughout the paper we
assume that EL was generated by one or more entities n ∈ N . An entity may
be a person or an object in the observed area.

Events in a location sensor log do not necessarily have a unique identifier
attached to identify by which entity they were triggered. Often data contains
overlapping and concurrent activities by multiple entities. In smart homes or
factories, multiple entities can be present at the same time. It has to be ensured
that the analysed activities are all associated with the correct entity, to obtain a
meaningful process model on a by-entity-level. Our method targets such scenarios
where a sensor cannot identify entities utilising a unique identifier as it is the
case in WiFi networks, for example.

Figure 1 gives an overview of the proposed approach, which consists of the
following four steps that are explained in the following sections:

1. Event Correlation: Correlation of events from a location sensor event log EL

to (unlabelled) activity instances yielding an instance log EI .

2. Activity Discovery : Discovery of process activities A together with their la-
bels and sensor-level process models describing the expected behaviour on a
sensor level.

3. Event Abstraction: Abstraction of the instance log EI to a process event log
EP where events are directly related to the start or completion of process
activities A.

4. Process Discovery : Process discovery based on the process event log EP

resulting in an activity-level process model defined over activities A.
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3.1 Event Correlation

The first step towards process mining on raw sensor events is to group the
input data according to a set of numbered activity instances by correlating each
individual location sensor event e ∈ EL to an activity instance i ∈ N. This
results in an instance log EI in which, beyond the requirements for EL, each
event ei ∈ EI is additionally assigned an activity instance that can be retrieved
with instance(e) ∈ N. The main goal of this step is to produce traces such
that each trace can be associated with an activity instance. We assume every
recorded event in the raw data is caused by an entity. In order to determine
which entity n ∈ N caused which event, the raw event location data is assigned
to the respective entities. Eventually the trace of each entity is divided into
smaller sub-traces (cases) that contain only one single activity: we denote this
as sensor case slicing. Here, also an approach for entity detection is required.

Entity detection. In a setting with sensors providing only information whether
an object is present or absent, a distinction between entities is not possible. How-
ever, if we know the relative location of the sensors to each other, our weighted
average distance approach can be implemented and distinguish between multi-
ple entities. The very first time any of the sensors detects the presence of an
entity is the beginning of the first entity’s trace. For every subsequent sensor ac-
tivation, we have to decide which entity caused the activation of a sensor. Each
time a sensor is activated, we calculate which already registered entity is closest
to the current sensor activation, based on the entities’ last known position. If
no entity is close enough, the algorithm assumes that a new entity has entered
the observed area and creates a new trace for this new entity. Both the proxim-
ity threshold and the maximum number of entities are parameters that can be
manually adjusted based on the scenario. This straightforward implementation
works well if entities always keep a certain distance to others. But as soon as
various entities cross paths in a spot that is only covered by a single sensor, this
method will not be able to correctly assign the sensor activations after the enti-
ties moved on, since the newly activated sensor has the same distance to every
entity in that single spot. This limitation can be overcome, by assuming, entities
will preserve their direction of motion and predict where entities are headed by
also considering the entities’ previous locations combined with a decay function
in the distance function.

Sensor case slicing. During its presence in the observed area, the entity exe-
cutes most likely more than a single activity. To identify meaningful activities
from the continuous recording (what is called a ”long trace”), an appropriate
separation into smaller sub-traces, called cases, is required. We have to divide
the traces here, because we are identifying and clustering activities by their
sensor-activation-signature, therefore the sub-traces can only contain one single
activity.

In concrete terms, in our approach, a long trace is cut into sub-traces of a
predefined fixed length. Depending on the application, the optimal fixed length
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might be different. Our implementation incorporates a grid search, comparing
the results for different sub-trace lengths, to maintain flexibility. The challenge
is to avoid sub-traces that are too short and contain too little sensor-data to
extract meaningful activities. But at the same time, the sub-traces cannot be
too long, as a too-long sub-trace may consist of multiple activities.

3.2 Activity Discovery

Having obtained the instance log ES , we aim to infer a set of process activities A
that are likely to have generated the raw sensor events. The outputs of this step
in our approach are a set of activities A. Each activity a ∈ A has both an activity
label label(a) as well as a process model describing the low-level behaviour of
that activity a in terms of events on the sensor-level. The main challenge in this
part of the approach is to determine a good division of activity instances into
clusters, i.e., an activity clustering where each of the clusters should represent a
distinct activity on the process level. This refers not only to the clustering itself
but also to finding a good number of clusters. Furthermore, a suitable activity
labelling needs to be found.

Activity clustering. Independent of the implemented clustering technique, the
objective remains the same: Find similar sub-traces and group them. For this,
we used a Self-Organising Map (SOM) clustering and k-means. The challenge
with the discovery of similarities is to find a criterion to define the similarity
between sub-traces. Usually, in SOM this is achieved by calculating the eu-
clidean distance between vectors. However, this is challenging if sensors have
arbitrary label names. We experimented with three alternative representations
of the traces: First, we counted how often each sensor is activated in a trace.
Second, we counted for how long each sensor is activated for in a trace. And
third, we combined both the quantity method and time method in one vector.
The third representation retains the most information of the original trace and
is, therefore, the preferred choice.

Activity labelling and Validation. Having discovered clusters of similar traces
corresponding to distinct activities, we still lack insights into the kind of activity
that may be represented by each cluster. Also, it may be challenging to judge
the quality of the obtained clustering. We assume that activity labelling gener-
ally requires a human-in-the-loop with appropriate domain knowledge. Thus, we
propose to discover a process model based on the events of each cluster by using,
e.g., Inductive Miner. Then, the quality of the process model is evaluated based
on the F1-score combination of the common fitness and precision measure. The
core idea is that these interpretable process models make our method suitable
for complex processes and the quality measure can be used to validate the clus-
tering result. Having access to the process models and their quality evaluation a
domain expert can interpret, validate and label each cluster with an appropriate
activity label a ∈ A.
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3.3 Event Abstraction

The third step of our approach combines the sub-traces yielded by the event
correlation step (Section 3.1) and the activity clusters detected in the Activ-
ity Discovery step (Section 3.2). This results in a process event log EP that
groups together events from the original location sensor event log EL to process
events ep ∈ EP . For each process event ep we can obtain the following at-
tributes: time(eP ) ∈ N, activity(eP ) ∈ A, entity(eP ) ∈ T , and transition(eP ) ∈
{start, completed}. Thus, each process event refers to a specific high-level pro-
cess activity and indicates a transition in the transactional life-cycle, i.e., whether
the activity instance has been started or completed.

3.4 Process Discovery

Having promoted the raw location sensor events EL to the level of activity
instances, our process event log EP fulfils almost all requirements for high-level
process discovery. Anyway, still missing are process cases that are meaningful to
our analysis goal. Identifying process cases is highly dependent on the particular
circumstance. In our application scenario, we propose to focus on re-occurring
behaviour of an entity starting with a specific activity (e.g., entering the smart
home). Based on our event correlation step (Section 3.1), we build a separate
trace for each entity. Then, the potentially very long trace referring to a single
entity is subdivided into multiple traces by dividing it into separate traces each
time the activity of interest occurs. To discover a meaningful process model, we
have to assume that regular and routine behaviour is observable. As a starting
point, an activity has to be selected that most likely will be the origin of the
routine behaviour such as entering the observed area. Finally, an overall process
model is discovered using a standard technique, e.g., Inductive Miner [26]. The
final output is a process model reflecting the observed behaviour of the entities
aggregated only from raw sensor data.

4 Evaluation

4.1 Set-up

We evaluated our approach on the publicly available CASAS data-set, which
contains raw sensor data from a smart home environment [2]. The CASAS data
fulfils the two requirements of our approach: it contains the timestamps and
location information of sensor events. The data was recorded in a smart home
test-bed with two residents and a house equipped with 51 motion sensors. Fig-
ure 2 shows the house plan and the positions of the motion sensors. Each mo-
tion sensor generates low-level events, where each sensor entry is tagged with
a timestamp, the sensor ID and the binary sensor value (active / not active).
We extracted sensor data from 7 consecutive days (02/05–09/02/2010) from the
20-Kyoto-2-Daily life, 2010-2012 data set.
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Fig. 2: Sensor layout of an apartment in the CASAS project [2].

We applied our method for different values of parameters such as sub-trace
length, number of clusters and the similarity measure used. We used grid search
to identify best parameter values for the clustering based on the average com-
bined fitness [27] and precision [28] (F1-score) obtained for the process models
discovered for each cluster of high-level events. We employ standard filtering
techniques (most frequent traces and activities) used in process mining to focus
on the dominant behaviour in each cluster. We compared the proposed SOM
clustering with k-means clustering based on the same similarity measures. The
implementation of step 1 and 2 is openly accessible 6 We used PM4Py 1.1.1 and
heuristicmineR for the process discovery and evaluation.

Having discovered activities and obtained traces based on the idea to discover
re-occurring behaviour starting with the same activity (Section 3.4), we applied
Heuristics Miner to discover a process model of the behaviour. Based on the
spatial layout of the smart home (Figure 2), we choose to create traces that
start with the activity Walk entrance/stairs/storage as the entry point into the
house. Heuristics Miner was selected as we expect the inhabitants of the smart
home environment to show a lot of infrequent behaviour, for which Heuristics
Miner has shown to be appropriate [29].

4.2 Results & Discussion

Figure 3 shows the results of our grid search. We experimented with trace lengths
ranging from four to twelve. Shorter trace lengths generally lead to a better F1-
score. However, we need to impose a minimal trace length since traces consisting
only of a single event would trivially lead to the discovery of process models with
perfect fitness and precision. In our case, less than four events did not allow to
infer a set of meaningful activities.

Evaluating sample data has shown that considering both the frequency of
activation as well as the duration of the activations as a similarity measure (the

6 https://github.com/d-o-m-i-n-i-k/Process-Model-Discovery-public.

https://github.com/d-o-m-i-n-i-k/Process-Model-Discovery-public
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Fig. 3: Average F1-score for process models discovered for the clusters based on
six different cluster sizes (6-16), five different maximum trace lengths (4-12),
four vector preparation methods and two clustering algorithms.

Fig. 4: Example of a Petri net discovered using Inductive Miner for a cluster in
the Activity Discovery step.

method quantity time) yields superior results, compared to only regarding one
aspect. When choosing too few clusters or too many, the quality score decreases.
In turn, choosing too many clusters may lead to several clusters representing the
same activities, which should have been grouped. We also qualitatively evaluated
the clustering by manually inspecting and labelling some of the results.

For example, the Petri net discovered by Inductive Miner on a cluster shown
in Figure 4 is a reasonable candidate. The three sensors that can be activated
simultaneously are all located in the bathroom. The subsequent sensors M29 and
M28 are located in the hall with M28, which is furthest from the bathroom. From
this example process model, it is reasonable to infer that this cluster refers to
activities where the entity spends some time in the bathroom and then left the
room. Overall, the similar results are obtained for 10 and 16 clusters with a trace
length of 4 and using our proposed quantity&time vectorisation approach.

We grouped the activity instances of the best clustering results (16 clusters)
into traces at the level of process instances. Afterwards we filtered the resulting
event log to only retain traces of a length in the range of 5 to 25 events. This
yields a log with 5898 events grouped in 273 traces with an average length of
21.6. The application of Heuristics Miner with a dependency threshold of 0.8
and a frequency threshold of 10 returns the Causal net dependencies shown in
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Fig. 5: Causal net discovered with the Heuristics Miner on the obtained process
event log.

Figure 5. The activity in entrance area of the house marks the starting point
of our Causal net. The activities that can mostly be observed after the entry
activity are walking between the rooms, walking in the upper hallways and going
to the kitchen to cook or wash the dishes. After cooking the dishes it often occurs
that the resident would walk between the rooms to sit down, presumably to eat
in the living room.

4.3 Limitations

A drawback of our method is the assumption of continuous movement in the
event correlation step (Section 3.1). As soon as the motion at the rendezvous
location is more than just a mere passing by, our approach might not return
the desired results. Additionally, the entity recognition could be improved by
using more sophisticated methods, e.g. hidden Markov models that have already
shown promising results in differentiating people from one another [30]. More-
over, the sensor case slicing mechanism could take variable sub-trace length into
consideration, i.e., depending on the activity, the number of involved events,
and therefore the sub-trace length may vary. For example, the activities sleep-
ing, cooking and washing hands are activities with a distinctive difference in the
number of involved events.

5 Conclusion

IoT environments generate a large amount of data, predestined for further analy-
sis. Process mining can give valuable insights into how real-life activities perform
when extracting meaningful activities instances from raw sensor events. This pa-
per combined unsupervised learning in the form of clustering and process mining,
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to discover activities and process models from motion sensors. We evaluated our
approach by comparing the obtained model quality for several clustering tech-
niques on a publicly available data-set in a smart home scenario and found it to
be superior. To fully relieve domain experts from process modelling and to au-
tomate the process of model discovery, we believe that an accurate approach for
entity centricity is imperative. For this, future tasks are to fuse heterogeneous
sensor events as input for high-level aggregation, to take into account other
vectorisation methods such the shortest path distance between sensors (i.e., re-
lational or pair-wise distances only) to better disambiguate between residents
and to apply non-end-to-end process discovery methods such as Local Process
Model discovery [22]. In further research, we plan to include spatial information,
like room layouts in smart homes, into our approach as well as implement vari-
able trace lengths and experiment with other machine-based learning techniques
to further improve the discovered process models.
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Abstract. Due to the rise of IoT, event data becomes increasingly fine-
grained. Faced with such data, process discovery often produces incom-
prehensible spaghetti-models expressed at a granularity level that doesn’t
match the mental model of a business user. One approach is to use event
abstraction patterns to transform the event log towards a more coarse
grained level and to discover process models from this transformed log.
Recent literature has produced various (partial) implementations of this
approach, but insights how these techniques compare against each other
is still limited.

This paper focuses on the use of Local Process Miner and Combination
based Behavioural Pattern Mining to discover event abstraction patterns
in combination with the approach of Mannhardt et al. [15] to transform
the event log. Experiments are conducted to gain insights into the per-
formance of these techniques. Results show that the results are very lim-
ited, with a general decrease in fitness and precision and only a minimal
improvement of complexity. Results also show that the combination of
the process discovery algorithm and the event abstraction pattern miner
matters. In particular, the combination of Local Process Miner with Split
Miner seems to improve precision.

Keywords: Process Mining · Unsupervised Learning · Event Log · Ab-
straction.

1 Introduction

Process Discovery focuses on the discovery of the process flow from an event
log [2], in order to gain insights in the real execution of a business process [1].
However, when event logs are recorded at a fine-grained level, the activities in the
discovered process model become increasingly less recognisable to the business
users. Furthermore, fine-grained event data, often result in incomprehensible
spaghetti-models [22].

Against this background, [14] introduced a pattern-based approach to aug-
ment low-level events to higher-level activities, resulting in more insightful pro-
cess models. Their original approach requires domain experts to provide event
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abstraction patterns which map low-level events to higher-level activities, which
are subsequently used to transform the event log.

More recently, Mannhardt and Tax [16] studied the use of Local Process Mod-
els to learn these event abstraction patterns from data. Even more recently, [3]
introduced a new unsupervised technique to discover event abstraction patterns
that are compact and maximal, increasing the options to apply the technique
proposed in [16] in an unsupervised manner. This raises the question how well
these two options perform with the end goal in mind, i.e. to transform the log
such that a process model is discovered which is more comprehensible and re-
mains properly fitting and precise.

This paper describes a benchmark study of LPM and COBPAM in combi-
nation with the approach in [16], focused on their capabilities to obtain models
of lower complexity without sacrificing fitness and precision. Furthermore, per-
formance differences between these two approaches were explored in order to
identify underlying mechanisms at work. This resulted in following contribu-
tions:

– In contrast to previous studies, this study also considers the impact of event
pattern abstraction on the understandibility of the final process models,
approximated by a broad set of complexity measures.

– This study provides an empirical comparison between LPM and COBPAM in
combination with the method presented in [16], providing initial suggestions
which of both event abstraction pattern miners performs best.

– This work provides empirical insights into the interaction between the pro-
cess discovery algorithm and the event abstraction pattern miner with re-
spect to their conjoint impact on fitness, precision and comprehensibility.

The remainder of this paper is structured as follows. Sect. 2 gives an outline
of related work in the domain. Next, Sect. 3 defines the methodology for the
benchmark study, as well as elaborates on the experimental design. Sect. 4 then
gives an overview of the experiment’s results before Sect. 5 concludes the paper.

2 Related work

This paper builds further on the work in [16], which studied the use of LPMs to
discover event abstraction abstraction patterns in combination with the approach
in [14]. However, their work was slightly different then ours, as they only focused
on fitness and precision, whereas we also take process model complexity into
account.

LPM [23] is can be used to discover event abstraction patterns in an unsuper-
vised manner. It extends frequent pattern mining techniques to more complex
patterns and aims to describe frequent behaviour in an event log in local pat-
terns. In [21], LPM is extended with utility functions and constraints to mine
more meaningful patterns, while [9] shows how high quality sets of a limited
number of LPMs can be constructed. However, both latter approaches require
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some kind of domain expert interaction, which puts them outside the scope of
our study.

Inspired by LPM, Acheli et al. [3] designed the Combination based Be-
havioural Pattern Mining (COBPAM) approach. It exploits a partial order on
potential patterns to discover only those that are compact and maximal, i.e.
least redundant.

Other unsupervised techniques mentioned in [25] are: global trace segmenta-
tion [11], HLPM-Mine [10], Bose et al. [8], Alharbi et al. [6], RefMod-Miner [18]
and the work of Sánchez-Charles et al. [19].

This study focuses on LPM and COBPAM as the setup under consider-
ation employs the approach in [16], which requires a defined process pattern
between the low-level events in the event abstraction pattern. Another approach
producing compatible patterns for this setup would be the RefMod [18] miner.
Unfortunately, as no public implementation was available for this technique, it
was not considered in this study.

It is worth noting that the combination of event abstraction pattern miners
and the technique in [16] is not the only possibility to discover higher-level
process models from low-level event data. For example, [20] presents a framework
designed to transform location sensor data to an event log via interaction mining
that business users can understand.

3 Methodology and Experimental Setup

This study takes the following algorithmic problem class as a starting point:

A process model discovered from an event log is too complex to un-
derstand because the event log is too fine-grained. What is needed, is
a technique which augments the event log to a higher abstraction level
such that a process model discovered from this transformed event log re-
sults in less complex process models which are still correctly representing
the underlying process.

This paper considers an algorithmic design to tackle this problem based on
the approach in [14] in combination with two unsupervised abstract pattern
discovery techniques, i.e. LPM [23] and COPBAM [3].

The quality of the algorithm design is defined on three criteria. Firstly, we
want the process model discovered from the transformed log to be more compre-
hensible. The second and third criteria state that the model discovered from the
transformed log should remain fitting and precise with respect to the original
data.

3.1 Evaluation Method

To evaluate the comprehensibility of the model discovered from the transformed
log, we use complexity as a proxy, which has been shown to be inversely related
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to the model understandability [17]. In total, ten complexity metrics were used,
covering the four complexity dimensions identified in [13]. 4 These complexity
metrics are computed for the process models discovered from the transformed
event logs.

(2)

(4)Event Abstraction
Patterns (5)Expanded Process

Model(1)

(2)

(5)

Event Log Fitness / Precision

(3)Transformed Event
Log

(4)

Process Model

Fig. 1: Method to evaluate fitness and precision: (1) event abstraction patterns
are discovered from the original event log, (2) the event log is transformed to
higher abstraction level, (3) a process model is discovered, (4) the process model
is expanded with the event abstraction patterns to the original granularity level,
(5) precision and fitness are computed.

To evaluate the fitness and precision of the model discovered from the trans-
formed event log with respect to the original event log, the same approach as in
[16] was used. First, event abstraction patterns are discovered from the original
event log. These event abstraction patterns map a local process pattern, defined
at the original granularity level, to a higher level activity. Second, these pat-
terns are used to transform the event log. Third, a process model is discovered
from this transformed event log. Fourth, the event abstraction patterns are used
to expand the process model into an expanded process model which is at the
abstraction level of the original event log. This is done by replacing the higher-
level activities by its corresponding local pattern. Fifth, the original event log
is compared against the expanded process model to calculate fitness and preci-
sion values. Fitness is measured by the alignment-based fitness measure [4] and
precision is measured with the alignment-based ETC precision measure [5].

3.2 Data

Six publicly available real-life event logs5 with different characteristics are used
in this study. Table 1 illustrates the variation among the logs in terms of number
of events, number of activities, number of cases and number of distinct traces.

Regarding the BPI challenge 2019 log, similar to [7], a sample of the event
log was taken for performance reasons. We preserved case variants containing at
least 50 cases, leaving us with 71% of the events.

4 This is done via the R package understandBPMN [13]
5 The event logs were extracted from the 4TU Centre for Research Data in May 2020.

https://data.4tu.nl/repository/collection:event_logs
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Table 1: Event log characteristics.

# events # activities # cases # distinct traces

Road Traffic Fine Management 561.470 11 150.370 231
Hospital Billing 451.359 18 100.000 1.020
Sepsis Case 15.214 16 1.050 846
BPI 2019 1.135.258 27 224.768 192
BPI 2020 - Request For Payment 36.796 19 6.886 89
BPI 2020 - Domestic Declarations 56.437 17 10.500 99

3.3 Experimental Design

Every experiment consists of controlled variables that are of interest to the study.
In our setup, the controlled variables are the event abstraction pattern miners
and the process discovery algorithms used.

Two event abstraction pattern miners were considered in this study, i.e. LPM
and COBPAM. For LPM the ProM implementation [24] was used with default
parameter settings, except for the maximum number of transitions (5) and the
number of patterns to discover (10). From the 10 patterns discovered, the top
3 according to the model ranking were selected, ignoring patterns subsumed
by other patterns. For COBPAM, the ProM implementation [24] is used with
support threshold, language fit threshold and maximum dept set to respectively
0.7, 0.7 and 2 in accordance to the original work [3]. Patterns are sorted by
support value and the top 3 patterns which are not subsumed by other patterns
are selected.

Furthermore, two discovery algorithms were used, i.e. the split miner [7] and
inductive miner infrequent [12]. Both are configured with their default values.
This means there is a conversion step from BPMN to Petri net in the case of
split miner6. The split miner is implemented as stand-alone Java application,
while the inductive miner is accessed via the ProM framework [24].

For all four combinations of the 2 event abstraction pattern miners and 2
discovery algorithms, the following experiment was performed:

For each event log, an initial process model was discovered and corresponding
complexity, fitness and precision values were computed. These values serve as
the baseline. Next, event abstraction patterns were mined from the event log and
the top three were used to transform the event log to a higher abstraction level
using the approach in [14]. The ProM implementation was used [24] and low-level
events that were not mapped to higher-level events were kept in the transformed
log. All other parameters were set at their default values. Finally, a new process
model was discovered from the transformed event log and complexity, precision
and fitness values were computed as described in Sect. 3.1. These measures can
be compared against the baseline values to evaluate the impact of a specific event
abstraction pattern miner for a given event log and discovery technique.

6 Done via the convert BPMN diagram to Petri Net (Control Flow) plug-in in ProM.
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4 Empirical Results

This section will explain the results of our experiment per quality dimension. In
total, the six event logs, three abstraction levels, two miners and 12 metrics for
each model, resulted in 432 metrics. The raw result set is available online7.

4.1 The Effect of Abstraction on Model Complexity

Complexity is measured by ten metrics in total. These are cognitive weight, token
split, connector heterogeneity, control flow complexity, sequentiality, cyclicity, di-
ameter, depth, density and coefficient of network connectivity [13]. From these
ten, token split, connector heterogeneity, control flow complexity, sequentiality,
cyclicity and the coefficient of network connectivity did not improve on average
due to event abstraction for any activity pattern miner, regardless of the process
model miner. The results concerning the remaining four are not uniform, how-
ever, as is shown in Table 2. The table describes, for each combination of miner
and complexity metric, the number of event logs for which an improvement was
observed and the average change. Note that a negative delta is considered an
improvement, i.e. a reduction in complexity.

Table 2: Abstraction impact on cognitive weight, depth, density and diameter.

Split miner Inductive miner
# Improvements Delta # Improvements Delta

Cognitive weight LPM 3/6 -3.37% 2/6 2.54%
COBPAM 4/6 -2.88% 2/6 3.45%

Depth LPM 2/6 -7.14% 0/6 33.33%
COBPAM 4/6 -35.71% 1/6 22.22%

Density LPM 1/6 12.18% 3/6 -1.52%
COBPAM 1/6 16.35% 3/6 -0.42%

Diameter LPM 1/6 4.92% 3/6 -5.41%
COBPAM 2/6 -2.19% 2/6 2.70%

Cognitive weight, which is the weighted sum of gateways and activities, seems
to improve for both LPM and COBPAM when paired with the split miner.
Depth, the amount of split minus join gateways, behaves in a similar fashion.
The inductive miner has a tendency to generate more (parallel) gateways than
the split miner, and this effect is still present after abstraction. However, it is
important to note that the baseline values for the inductive miner are already
lower than the split miner’s.

Density represents the percentage of sequence flows which are present com-
pared with the theoretical maximum number of sequence flows. It shows the

7 https://github.com/gregvanhoudt/UnsupervisedEventAbstraction
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inverse behaviour of cognitive weight and depth, improving when paired with
the inductive miner. However, the improvement here is much smaller than the
deterioration with the split miner. A small density value indicates that the pro-
cess is more sequential. The models substantiate this, as the split miner has a
tendency to loop back to previous gateways to allow for repetitive behaviour,
creating more sequence flows. In that regard, it is possible for depth to improve
while density worsens.

The diameter metric only seems to improve, on average, for the combinations
COBPAM-split miner and LPM-inductive miner. Also, even if diameter improves
on average, the value decreases for the majority of the logs. Given that the results
do not seem to correlate with a discovery miner or activity pattern miner, specific
conclusions cannot be drawn for this metric. Further experimentation is required
to obtain more conclusive results.

When considering all complexity measures simultaneously, we count 15 and
19 improvements for LPM and COBPAM, respectively. Although the difference
is small, this seems to indicate COBPAM is slightly better in reducing complexity
than LPM, independent of the process discovery algorithm. In general, we can
conclude that, in our experimental setting, pattern-based event abstraction does
not reduce the complexity of newly learnt models. However, caution is advised
as we limited ourselves to only three patterns for each abstraction. Inserting
additional patterns might have a positive impact on complexity. Keep in mind
this will probably also impact fitness, and potentially precision.

4.2 The Effect of Abstraction on Model Fitness and Precision

The second facet of the study, the accuracy of process models, is measured by
fitness and precision. Table 3 summarises the outcomes. A positive delta is now
considered an improvement. Note that for precision - LPM - Inductive miner,
we were unable to compute two values.

Table 3: Abstraction impact on fitness and precision.

Split miner Inductive miner
# Improvements Delta # Improvements Delta

Fitness LPM 0/6 -23.86% 1/6 -13.00%
COBPAM 0/6 -32.04% 0/6 -22.93%

Precision LPM 4/6 0.67% 1/4 -34.25%
COBPAM 1/6 -4.78% 1/6 -26.00%

Regarding fitness, the data shows there is a severe negative effect: only one
improvement is observed. Performing a t-test at the 5% significance level, the
only insignificant difference was for LPM in combination with the inductive
miner. Of course, the numbers have to be nuanced as the split miner gener-
ated a baseline of nearly perfect fitness, so an increase will be very difficult
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to accomplish. However, the magnitude of the decrease makes clear automated
pattern-based abstraction negatively affects the fitness of new high-level process
models.

One possible explanation is the overlap between activity patterns. Recall that
fitness can only be calculated after the high-level model is expanded to again
include the low-level event classes. This means one event class can now be present
at multiple locations in the model. This can result in the obligation of an event
class to be executed multiple times according to the high-level process models,
which is not the case on the lower level. Also, the overlaps make it unclear which
low-level event belongs to which high-level activity [16], generating potential
confusion during the abstraction of the event log.

The precision metric also shows clear evolutions, although not as uniform
as fitness. In fact, the average precision metric for LPM in combination with
the split miner increased. However, the differences were not significant at the
5% significance level. A potential reason for decreases of precision is that we
assume parallel relations between activity patterns. Should patterns overlap,
it could be more reasonable to state that two patterns cannot co-exist. If two
overlapping high-level patterns are present in the model, this is an introduction
of additional behaviour. On the other hand, the goal of event log abstraction is
hiding / grouping low-level behaviour, which should have a positive influence on
precision.

In general, fitness only increased once for LPM without observing any im-
provements for COBPAM. The precision metric improved 5 and 2 times for
LPM and COBPAM respectively, with the majority of improvements located at
LPM-split miner in particular. Results suggest that LPM performs better when
interested in fitness and precision of abstracted models.

4.3 Discussion

Overall, the study shows that the use of event abstraction pattern miners to
transform an event log with the purpose of discovering less complex process
model with good fitness and precision, has limited success. On average, it seems
that this approach, using either LPM or COPBAM, results in a decrease of
fitness and precision, with only limited effect on complexity.

Fitness typically takes a hit when abstracting the event log, which is not
completely unexpected as abstraction patterns hide complex behaviour which
can no longer be accounted for by the miner. It is also remarkable that the
impact on fitness appears to be correlated to the process discovery algorithm.
Before abstraction, the split miner produces the best-fitting models. After ab-
straction, however, this fitness drops heavily, to the extent that the inductive
miner produces better-fitting models at that stage.

Precision also has a tendency to deteriorate, with the exception for the com-
bination of LPM with split miner. For this combination, in the majority of the
cases we saw an improvement of precision and the average effect was also pos-
itive. It is remarkable that this result is not observed for the combination with
COBPAM and that LPM cannot reproduce these effects with inductive miner.
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This again confirms the pattern that there is some kind of interaction between
the process discovery algorithm and the event abstraction pattern miner.

As for complexity, for most of the measures no clear improvement was ob-
served. The only pattern that could be distinguished, which supports the goal
of this approach, is the slight improvement of cognitive weight and depth for
split miner and the improvement of density for inductive miner. Again, these re-
sults hint at an interaction between the discovery miner and abstraction pattern
miner.

Overall, we can conclude that this approach combined with LPM and COB-
PAM has limited results. Future research will be needed to improve these results
in order to make them impactfull enough for practical use. Based on our em-
pirical analysis, a potential direction for future research is to delve into the
interaction between the discovery algorithm and the abstraction pattern miner.
It is clear that there are mechanisms at work and understanding these could open
up avenues for improved algorithms. Another path worth investigating is the au-
tomatic discovery of how activity patterns interrelate. The approach in [16] has
parameters which define which patterns can or cannot co-exist and in what type
of interrelation. The current event abstraction pattern miners do not provide
this type of information.

Finally, based on these mixed empirical results, one must be careful to draw
strong conclusions with respect to the performance of LPM versus COBPAM.
One might suggest that both approaches are competitive to each other, with the
exception of the combination of split miner with LPM, which actually appears
to improve the precision of the models on average. As with respect to reducing
complexity, COBPAM seems to have a small edge over LPM, albeit too small to
make conclusive statements.

4.4 Limitations

This experiment can be extended in several ways. First of all, a new approach to
evaluate LPMs was recently proposed [9], which is not implemented in our work
yet. This new evaluation acknowledges the excessive amount of overlapping pat-
terns and disregards confidence and determinism as quality measures. For COB-
PAM, we only have access to support and language fit scores. A more advanced
scoring and selection technique of activity patterns could have improved the
experiment, obtaining less overlapping patterns as with the meaningful LPMs
[9].

On the other hand, the current study fixes the number of activity patterns
that are taken into consideration to three. Mannhardt and Tax [16] concluded
that the optimal number of patterns varied per event log. No doubt the same
applies to this study.

Next, this experimental setup uses six event logs. Each of them returns
six process models: a low-level, a LPM-abstracted and a COBPAM-abstracted
model for both the split miner and the inductive miner. Therefore, this study
compares 36 process models. To obtain a larger number of observations to draw
conclusions from, this number of event logs can easily be increased.
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Finally, as discussed in Sect. 2, the RefMod-Miner also satisfies the require-
ments to take part of this experiment, yet no public implementation is available.

5 Conclusion

In this paper, local process models and the combination based behavioural pat-
tern mining approach are put against each other in unsupervised event log ab-
straction. The goal was to produce process models at a higher abstraction level
with better comprehensibility, while still being well-fitting and properly precise.

However, the experiments show only limited results. While some aspects of
complexity show possibilities for improvements, they seem tied to the process
model miner. Fitness gets a significant hit overall and precision only tends to
improve for the combination of LPM and Split Miner.

Future research is required with respect to the interactions between activ-
ity pattern miners and process discovery algorithms. This could allow for more
accurate abstraction techniques. Also, discovering meaningful and more precise
activity patterns is an interesting research track. But perhaps more importantly,
the possibility to discard our assumption about only parallel inter-pattern rela-
tions must be explored. Being able to learn this from data could greatly improve
the abstraction quality.
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