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Abstract. Thanks to its ability to offer a time-oriented perspective on
the clinical events that define the patient’s path of care, Process Min-
ing (PM) is assuming an emerging role in clinical data analytics. PM’s
ability to exploit time-series data and to build processes without any a
priori knowledge suggests interesting synergies with the most common
statistical analyses in healthcare, in particular survival analysis. In this
work we demonstrate contributions of our process-oriented approach in
analyzing a real-world retrospective dataset of patients treated for ad-
vanced melanoma at the Lausanne University Hospital. Addressing the
clinical questions raised by our oncologists, we integrated PM in almost
all the steps of a common statistical analysis. We show: (1) how PM
can be leveraged to improve the quality of the data (data cleaning/pre-
processing), (2) how PM can provide efficient data visualizations that
support and/or suggest clinical hypotheses, also allowing to check the
consistency between real and expected processes (descriptive statistics),
and (3) how PM can assist in querying or re-expressing the data in terms
of pre-defined reference workflows for testing survival differences among
sub-cohorts (statistical inference). We exploit a rich set of PM tools for
querying the event logs, inspecting the processes using statistical hypoth-
esis testing, and performing conformance checking analyses to identify
patterns in patient clinical paths and study the effects of different treat-
ment sequences in our cohort.
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1 Introduction

Process Mining (PM) is a family of process analysis methods that aim at dis-
covering, monitoring and improving the efficiency of real processes by extracting
knowledge from the Event Logs (EL) recorded by an information system. Ana-
lytic algorithms are applied to ELs with the main goals of: (i) mining the data
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in order to represent the process able to produce them (Process Discovery, PD),
(ii) measuring to which extent a given process can represent an input EL or how
much an EL complies with a given process (Conformance Checking, CC), and
(iii) improving process efficiency, by allowing problem diagnosis and delay pre-
diction, recommending process redesigns or supporting decision making (Process
Enhancement) [2].

In PM for Healthcare (PM4HC), processes are meant as a graph of activities
which can be performed with the aim of diagnosing, treating and/or preventing
diseases to improve the patients’ health status. The activities can be clinical and
non-clinical and may represent different behaviours according to the specific or-
ganization [12]. Often, such processes are highly dynamic, complex, increasingly
multidisciplinary [8]. Notably, the complexity increased recently due to the ad-
vent of personalized approaches to care, in which treatments are tailored to the
specific profile of the patient and disease, such that the diversity of therapeutic
pathways exploded compared to traditional standardized care guidelines.

Pragmatically, PM4HC has shown interesting applications in many domains,
and in Oncology in particular, PM4HC was successfully applied to identify the
most common patterns of care for many kinds of tumors, even though the
purpose remained exploratory. Rectal cancer [7], gynecological cancer [11], and
melanoma [13] were investigated both in terms of PD and CC, even if in most
cases the focus was more on CC, while the application of PD remained descrip-
tive of the general trend [9]. From this perspective, there were only few cases
where the PM4HC analysis was used for statistical inference, i.e. to concretely
develop predictive models assessing the role of covariates in determining disease
evolution or patient clinical pathway. While the idea of applying a combina-
tion of PM and statistics for a complete statistical analysis is not entirely new
[4][10], it is not a very common approach and still requires to be consolidated, in
particular to integrate survival analysis, which plays a forefront role in Oncology.

In this work, we focus on exploring the contributions of PM when perform-
ing statistical analyses in Oncology. As an application, we examined a real-world
cohort of advanced melanoma patients treated at the Lausanne University Hos-
pital (CHUV); here we show how PM can guide and/or assist researchers in all
the classical steps of statistical analysis, that is, data preprocessing, descriptive
statistics, and inferential statistics. Figure 1 summarizes these steps.
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Fig. 1. Workflow of the classical steps of a statistical analysis, here implemented ex-
ploiting a process-oriented approach.
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In the preprocessing step, we approached the data inspecting their struc-
ture, their information content, and their quality: after identifying the clinical
milestones of interest (like diagnosis, treatments, survival outcome), data were
first shaped as EL. We then employed the visualization tools provided by PM to
detect data inconsistencies due to input errors or missing values. This allowed
us to go back to the data sources, recheck and correct the recorded information,
thus recursively improving the data quality.

In the descriptive analysis step, we first employed the EL time-oriented struc-
ture to inspect cardinality and order of the administered pharmacological treat-
ments. Then, we implemented both unsupervised and supervised methods to
capture the flow of the patients’ pathways over data-driven graphs (PD ap-
proach) or user-defined graphs (CC approach), respectively. In this part of the
analysis, the graphical output provided by PM allows a fast access to the de-
sign and/or interpretation of the models, and an immediate assessment of the
treatments in terms of type, order and timing of consecutive administrations.

Finally, in the inferential statistics step, we build upon the processes con-
structed in the previous step to quickly select sub-cohorts of patients character-
ized by similar patterns of care and/or clinical attributes. The cohorts were then
compared in terms of time-to-event outcome and overall survival (OS), using
Kaplan-Meier analysis and log-rank test.

2 Material and Methods

2.1 Material

In this work, we analyzed the data of a cohort of patients treated at the CHUV
and diagnosed with advanced melanoma.

Melanoma is an aggressive cancer that arises from melanocytes (pigment
cells). Cutaneous melanoma is the most common type. However, it exists also
uveal and mucosal melanomas, which occur in the eye and in the mucosa (such
as the mouth or the vulva), respectively. The primary risk factor of cutaneous
melanoma is ultraviolet light exposure. As outdoor activities are a way of life in
Switzerland, the melanoma incidence is high in the country [3]. The extent of
the disease progression is described by a staging system, ranging from I to IV:
Stage IV indicates metastatization of melanoma cells to distant organs. Surgery
is the most common and resolutive approach for the lowest stages, but when
the disease is more extensive, systemic treatments such as Immunotherapy are
required, with Radiotherapy also used as palliative or local treatment.

The study cohort includes 184 patients diagnosed with advanced melanoma
between March 18th, 2008 and November 17th, 2019, with follow-up up to 2019,
December 30th.1 Data were sourced from the electronic healthcare records avail-
able at CHUV and curated by trained oncologists.

1 This study was approved by the Research Ethical Committee of Canton de Vaud
(CER-VD) and includes only patients who did not oppose usage of their data, and
was conducted according to the Swiss Federal Act on Research involving Human
Beings.
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Data includes: sex, date of birth, primary tumor type, stage and diagnosis
date, advanced tumor diagnosis date and mutation type (among BRAF-V600,
BRAF-nonV600, NRAS, wild type (wt)), pharmacological treatments, and sur-
vival information (date of death or last follow-up). In this study, only the med-
ications administered after the stage IV diagnosis were considered.

2.2 Methods

We implemented the classical statistical analysis pipeline shown in Figure 1 by
employing PM4HC techniques to achieve the goals of each step. To perform
the analyses, we used pMineR, an open source R library implementing PM4HC
functionalities [5]. By handling data in the form of EL, it allows, among its
features, to implement PD and CC analyses.

We started with the raw data set, which we first assumed to be clean from
mistakes. First, we cast the data in the form of EL, by selecting the main clinical
milestones of interest for the analysis and defining the rules to cope with missing
values. Then, we implemented a PD algorithm based on First Order Markov
Models (FOMMs)[5], to provide a fast and easy-to-understand representation of
the subsequent events. This representation allowed us to identify visually some
unexpected links between clinical events (e.g. due to mistakes in some dates).
With the help of a physician, we iteratively reviewed the data and rerun the PD
algorithm in order to increasingly approach the expected graph and thus refine
the data quality.

To describe the general statistics of the population and quantify the flux
of patients though different patterns of cares (the second step in Figure 1), we
exploited both PD and CC techniques. The unsupervised PD analysis is based
on the same FOMM model as described above. The supervised CC approach
is based on a pre-defined representation of the different treatment lines imple-
mented with the Pseudo-Workflow formalism (PWF) available in the software
tool. Once performed PD and CC, the patients were grouped according to their
paths through the graphs using the selection language provided by the tool. Then
Kaplan-Meier survival curves and log-rank tests were used to quantify statistical
differences between the groups, considering as end-points time-to-event in PD
and OS in CC.

Process Discovery In PD, one of the most diffused process representation
exploits the directly-follows graphs (DFGs): in this graphical representation,
directed edges link all the couples of nodes representing subsequent activities
in the EL. Even if DFGs have some well-known limitations [1], they are very
intuitive and can be helpful to share with clinicians a first representation of the
data. In the pMineR implementation, DFGs correspond to FOMMs.

Conformance Checking CC was performed by using the PWF, designing
a diagram that describes the expected flow of events in terms of diagnoses,
treatment lines, and survival events. Graphically, this results in a set of nodes,
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representing the status that the subjects can assume, and a set of conditions
(triggers) which fire transitions between status [6]. This representation allows to
count which triggers/status are activated while automatically running down the
events of each subjects, thus capturing the population behaviours through the
diagram.

3 Results

3.1 Data preprocessing

Event Log For each patient, we built the EL with the following events, each
associated with a time stamp:
– Primary Stage: the primary diagnosis, with melanoma type, tumor stage at

the diagnosis, and somatic mutation harboured by the tumor as attributes;
– Stage IV : the diagnosis of stage IV;
– T-Begin: the begin of a line of treatment, with the type of the given drug(s)

as attribute;
– T-End : the end of a line of treatment, with the type of the given drug(s) as

attribute;
– Dead, Censored : the survival information, consisting in the dead of the pa-

tient or in the last follow-up date, respectively.

The collected treatments belong to the following categories:
– Immunotherapy (IO): anti-CTLA4, anti-PD1, anti-CTLA4 + anti-PD1 (in

combination), or other IO;
– Chemotherapy (Chemo);
– Targeted therapy : tyrosine kinase inhibitors (TKI), other targeted therapy

(TT).

In this study, only the treatments after stage IV diagnosis were considered.

Missing data In time-oriented analyses, missing information can consist either
in unrecorded events or in missing dates associated to the events themselves.
In order to preserve the clinical information we kept only complete treatments
lines: the EL of patients with an incomplete line were thus truncated to the
last available certain information (stage IV diagnosis or end of a previous line),
artificially introducing a Censored event before the line with missing information.

Data Cleaning To detect mistakes in the data, we adopted an iterative ap-
proach: a FOMM process was discovered and visually analyzed to detect in-
consistencies on unexpected edges. Then, the data were updated and the the
procedure repeated until no more mistakes were found.

To give a practical example of detection, we report in Figure 2 a) the FOMM
resulting from an intermediate version of the dataset, where unexpected edges
emerge because the beginning of the first line of treatment was erroneously dated
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Fig. 2. First Order Markov Models obtained on all the events constituting the EL: a)
before cleaning the information of a subject with an error in the dates, b) after data
cleaning.

before the stage IV diagnosis for one patient in the source data. In Figure 2b) we
can observe the FOMM after correction of the inaccurately collected information.
This updated graph presents, conversely, only relations fully compliant with the
nature (and the collection design) of the data.

With this approach we revealed some previously uncaught mistakes in the
original data, such as inconsistency in data representation (e.g. dd/mm/yy vs
dd/mm/yyyy), or temporal event inversion (e.g. cancer treatment begin before
a tumor diagnosis).

3.2 Descriptive statistics

A first descriptive statistics was performed by querying the input EL, consisting
of 1196 records: this allowed us to explore in the first instance cardinality and
order of the administered treatments. Then, we delved into the data by using
the FOMM, to obtain an agnostic data representation, and a PWF diagram, to
verify the consistency of the process with respect to the expected behaviour.

Event Log querying By analysing the EL it was possible to perform some first
descriptive investigations. We focused, specifically, on the treatments adminis-
tered to the patients. Considering the events of all the patients, regardless of
the position in the path of care, we extracted a total of 322 administered treat-
ments. Table 1 reports, for each treatment category, its absolute and relative
frequency of occurrence, and its duration in terms of median and inter-quartile
range (25%-75%).

Out of 163 patients that received at least one recorded line of treatment, we
identified 49 distinct patterns of treatment sequence. The most frequent ones
are reported in Table 2.
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Table 1. Occurrences and duration (in days) of the administered treatments collected
in the data. The inter-quartile ranges (IQR) are computed at 25% and 75%.

Drug category Occurrences (%) Median (IQR) duration
(n=322) [days]

TKI 76 (23.6) 122 (76.5–228.0)
anti-CTLA4 + anti-PD1 70 (21.7) 46.5 (0.0–167.8)
anti-PD1 66 (20.5) 84.0 (33.0–253.2)
anti-CTLA4 66 (20.5) 61.5 (31.0–63.0)
Chemo 29 (9.0) 44.0 (22.0–67.0)
Other IO 13 (4.0) 92.0 (22.0–203.0)
TT 2 (0.6) 461.5 (300.7–622.2)

Table 2. Most frequent patterns of treatment recorded in the data. The relative fre-
quency of occurrence is computed over the total number of patients with at least one
recorded treatment.

First line Second line Occurrence (%)
(n=163)

anti-CTLA4 + anti-PD1 - 36 (22.1)
anti-PD1 - 22 (13.5)
anti-CTLA4 - 11 (6.7)
anti-CTLA4 + anti-PD1 TKI 11 (6.7)
Chemo anti-CTLA4 9 (5.5)
anti-CTLA4 anti-PD1 8 (4.9)
TKI anti-CTLA4 6 (3.7)
anti-CTLA4 TKI 5 (3.1)
TKI - 3 (1.8)

Process discovery on treatment sequences Figure 3 shows the FOMM ob-
tained from the clean EL considering only the administered treatments (ignoring
diagnosis and survival events). Such a process allows to inspect the temporal
causality of the treatments, highlighting the most frequent connections over all
the population. It also provides a first overview of the position of the treatments
in the paths.

Conformance checking for treatment sequences We designed a PWF able
to capture the chronological order of the events: at the top, we represented the
events related to the staging, and then the different treatment lines. In order
to be able to define treatments paths at different levels of granularity we added
a further status for each treatment line, that is, IO (immunotherapy). This is
doable thanks to the possibility in the PWF formalism to define simultaneous
activation of multiple status. Finally, we introduced two additional status to
catch the survival outcomes, namely Dead and Censored, that can be activated
without constraints on the previous status, as soon as a survival event is read
in the EL. The activation of the survival status terminates the inspection of the
flow of events for that patient.

Figure 4 reports the result of the run on our cohort. Nodes and boxes report
the number of times that a status/trigger was reached/fired. Due to space con-
straints, we limited the plot to the first two lines of treatment, even if the PWF
included all the 7 lines of treatments available in the data.

By inspecting the graph, it is possible to follow the population’s paths and
read the corresponding number of subjects that run specific patterns. For in-
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Fig. 3. First Order Markov Models obtained on the treatments.

stance, we can observe that all the patients included in the dataset (and thus
with a BEGIN event) had a Stage IV diagnosis (expected by design), that the
most frequent first line of treatment was the combination of anti-CTLA4 and
anti-PD1 with a total of 56 occurrences, or that only 163 over 184 patients had
a first line recorded, followed in 89 cases by a second line.

The survival nodes (Dead and Censored) are graphically separated from the
others in order to limit the number of edges in the graph. However they can be
reached from any point in the graph, and the available query tool can inspect
at what precise point they were activated.

3.3 Inferential statistics

By exploiting the EL, the FOMM and the PWF diagrams of the previous anal-
yses, we could easily select cohorts characterized by specific patterns of interest
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Fig. 4. Conformance Checking model (limited to the first two lines of treatments)
reporting the status activated by the patients’ processes over the used-defined PWF.

and perform survival analyses. While the FOMM strongly reflects (and is limited
to) the events and the information present in the EL, the PWF represents an
abstraction where the user has the opportunity to provide additional knowledge
in the definition of the PWF structure itself. This enhanced semantic expres-
siveness is one of the main reasons why PWF was previously used in structuring
Clinical Guidelines [5]. Descriptive statistics can help in suggesting hypotheses:
in our case, the previous PWF and FOMM diagrams allowed to easily iden-
tify and query cohorts for statistical inference analyses. We report below two
examples of the investigations we performed.

First, we inspected the relationship between type of somatic tumor mutation
and time between primary and Stage IV diagnosis. Here, we consider the follow-
ing mutation status: BRAF V600 mutated, BRAF non-V600 mutated, NRAS
mutated, and wt. For this study, we limited the cohort to cutaneous melanoma
patients, exploiting filtering tool to easily query the EL attributes.

We implemented a survival analysis by first using the FOMM structure of
Figure 2 to query the path of interest (between the nodes Primary Stage and
Stage IV) and obtain the time between the two events. Then, the Kaplan-Meier
estimator is computed, with patients stratified by mutation status, as shown in
Figure 5a). Even if a difference between the BRAF v600 mutated and the NRAS
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mutated sub-cohorts seems to emerge, the log-rank test computed between all
the survival distributions pairs report no significant differences (all p-values were
>0.05) for any combinations.

Fig. 5. Time-to-event analysis based on a mined FOMM: time from primary to stage
IV diagnosis, stratified by: a) mutation, b) mutation and type of primary.

To demonstrate the potential of the analysis – even if in this case limited
by the sample cardinality – we performed a further stratification of the data,
distinguishing patients by their primary stage. Also here, pMineR facilitates this
step, by allowing direct selection on the patient attributes. Figure 5b) reports
the plot of the corresponding Kaplan-Meier estimator. Even if, as expected, no
statistically significant clinical evidence emerges from this analysis, mainly due
to the low number of subjects per category, it is interesting to observe how
rapidly this approach allows to enrich the analysis’ level of detail.

The second survival analysis exploits the PWF defined in Figure 4. We
queried the data in order to identify any differences in terms of OS based on
the following patterns of interest: (1) only IO (any BRAF status), (2) IO →
TKI, (3) TKI → IO, (4) only TKI. In defining the rules, we grouped together
consecutive lines belonging to the same category. Patterns interspersed with TT
or Chemo treatments were excluded. Upon the suggestions of clinicians, in case
of sequences with multiple treatment lines, only the first occurring pattern was
considered. The resulting OS survival curves are shown in Figure 6. Table 3 re-
ports the frequency of occurrence of each pattern, the median OS time (in years),
and the percentage of patients alive at 1.5 and 3 years (CI at 95%), respectively.
Statistical significance of OS differences was assessed with the log-rank test,
which turned out to be significant for IO vs IO → TKI (p-value<0.0001) and
IO vs TKI → IO (p-value: 0.012). The difference between IO and IO → TKI
is expected because patients who receive TKI after IO are those who did not
respond to IO. Knowing that the benefits of TKI are usually only temporary, it
is not surprising that these patients have shorter OS. The difference between IO
and TKI → IO is interesting, as it may be related to recent biological findings
showing that acquired resistance to TKI may hinder IO efficacy.
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Fig. 6. Overall survival analysis based on a CC graph: time from stage IV diagnosis
to death, stratified by treatment pattern.

Table 3. OS for the main treatment patterns of interest.

treatment path frequency median OS [years] 1.5-year OS % (95% CI) 3-year OS % (95% CI)
all 100 % 3.87 72.7 (66.1 - 80.1) 54.9 (47.1 - 64.1)
IO 45.7 % NA 76.9 (68.0 - 86.9) 69.4 (59.1 - 81.5)
IO → TKI 17.9 % 1.77 63 (48.3 - 82.1) 18.6 (7.7 - 45.2)
TKI → IO 8.7 % 1.92 57.4 (36.6 - 90.1) 25.1 (9.7 - 65.3)
TKI 1.6 % 1.00 0 0

4 Discussion and Conclusion

PM4HC is expected to have an increasingly relevant role in the analysis of health-
care data, in particular in Oncology. Process-oriented representations, together
with tools able to interrogate the data in terms of temporal patterns identified
through paths in a workflow, are efficient ways to easily generate clinically-
relevant hypotheses and measure statistical significance, in particular in survival
analysis.

In this preliminary work, we demonstrated the added value of a process-
oriented approach when performing three classical steps of data analysis: pre-
processing, descriptive statistics, and inferential statistics. The main remarkable
points emerging from this experience are: (a) query languages for EL, PD and
CC are efficient tools for data cleaning and preprocessing, by quickly identifying
previously unrecognized mistakes; (b) graphical representations can promote dia-
logue between clinicians and data scientists, suggesting alternative perspectives
and possible research questions; (c) PD gives a relevant contribute in repre-
senting the data in an agnostic way; on the other hand CC (with formalisms
such as PWF) allows implementing multi-scale data abstractions and identi-
fying patterns or inconsistencies of the data in pre-defined workflows; (d) the
process representations, both in PD and CC, effectively support survival analy-
sis techniques, allowing rapid definition of sub-cohorts of interest and providing
immediate statistical measures of differences between various paths of the graph.
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Noticeably, each step of this study was performed in close cooperation be-
tween clinicians and PM scientists, in the effort of creating a multidisciplinary
team with shared PM skills. The final goal will be to give full autonomy to
physicians to perform PM analyses themselves.

In the future, PM4HC has great potential to be developed further in synergy
with classical statistical tools to analyze healthcare-related data. In particular,
the fast-growing amount of real-world clinical data produced in modern hos-
pitals, each patient’s therapeutic journey being by nature a temporal process,
represents a formidable opportunity for PM4HC to contribute to the advent of
precision medicine.
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Abstract. A temporal disease trajectory describes the sequence of diseases that a 

patient has experienced over time. Electronic health records (EHRs) that contain 

coded disease diagnoses can be mined to find common and unusual disease tra-

jectories that have the potential to generate clinically valuable insights into the 

relationship between diseases. Disease trajectories are typically identified by a 

sequence of timestamped diagnostic codes very similar to the event logs of 

timestamped activities used in process mining, and we believe disease trajectory 

models can be produced using process mining tools and techniques. We explored 

this through a case study using sequences of timestamped diagnostic codes from 

the publicly available MIMIC-III database of de-identified EHR data. In this pa-

per, we present an approach that recognised the unique nature of disease trajec-

tory models based on sequenced pairs of diagnostic codes tested for directional-

ity. To promote reuse, we developed a set of event log transformations that mine 

disease trajectories from an EHR using standard process mining tools. Our 

method was able to produce effective and clinically relevant disease trajectory 

models from MIMIC-III, and the method demonstrates the feasibility of applying 

process mining to disease trajectory modelling. 

Keywords: Disease trajectories, Process mining, Electronic Health Records. 

1 Introduction 

There is a small but growing body of literature exploring the generation of disease tra-

jectories using electronic health records (EHR) [1, 2]. The rich collection of patient data 

in the EHR is a valuable source to get an extensive trail of disease diagnoses over time 

[3]. Mining the trails of disease diagnoses and the temporal information may help to 

identify patterns in disease trajectories of clinical value. A better understanding of pat-

terns of disease  may advance precision medicine to improve care at an individual level 

[4] and improve medical understanding of common disease progression at the popula-

tion level [5, 6]. A study by Jensen et al. [7] had identified the disease trajectories of a 
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large cohort by combining a data-driven and statistical approach. However, their tra-

jectories were built based on overlapping pairs of diagnostic codes suggesting the pres-

ence of longer trajectories without confirming if such trajectories are available in the 

data. Based on this, we propose an improvement by incorporating process mining as a 

toolset and method for mining end-to-end disease trajectories. 

Process mining utilises a set of tools to discover process models using data from an 

organisation’s information system. Extracted data are transformed into an event log, a 

collection of activities and its corresponding timestamps, sometimes supplemented 

with additional attributes. There is now a large body of literature applying process min-

ing to the domain of healthcare, typically focussed on discovery of actual care processes 

[8], conformance to guidelines and enhancement to improve the quality of healthcare 

services [9], the safety of the patients, and better management of resources [10, 11]. 

Jensen et al. [7] defined a disease trajectory as the patient’s orderly series of diagno-

ses. The definition is comparable to the concept of a trace in process mining where a 

trace is the sequence of activities for an individual case [12]. We hypothesise that it 

should be feasible to apply process mining to discover a disease trajectory model [2]. 

To the best of our knowledge, this is the first time process mining has been used to 

identify disease trajectories from a real world EHR. 

In this paper, we present a novel disease trajectory mining method using process 

mining techniques applied to the MIMIC-III open access EHR database. We identified 

the sequence of diagnoses (trace) based on the temporal aspect of the patients’ admis-

sions, broke down each trace into pairs of diagnoses, statistically analysed the pair’s 

correlation and represented the identified disease trajectories using a directly-followed 

graph produced by standard process mining visualisation tools [12]. The research ques-

tions are as follow: Q1-Can disease trajectories be identified using a process-mining 

approach? Q2-What are the most followed trajectories and what exceptional trajecto-

ries are followed? Q3-Are there differences in trajectories followed by different patient 

groups (by sex, by age group, by mortality status)? And, Q4-What are the longest and 

shortest average time transition trajectories? 

2 Background 

Process mining provides a set of techniques and tools to uncover the real behaviour of 

processes from a range of perspectives including, but not limited to [12]: control-flow, 

performance, conformance, and organisational. There are three types of process min-

ing: first, process discovery to generate process models from event log data, second, 

process conformance to check either a process model conforms to an event log or vice 

versa and third, process enhancement to improve a process model using the information 

of the actual process recorded in the event log [12]. 

In healthcare, process mining techniques may help the clinicians answer questions 

associated to each characteristic of the healthcare processes (e.g. primary care, second-

ary care, tertiary care, etc.) [8]. The rich information in the EHR is the source of answer 
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to the four types of data science questions: “what happened?”, “why did it happen?”, 

“what will happen?”, and “what is the best that may happen?”. In this study, we fol-

lowed the most widely used methodology, the PM2 framework, which describes six 

process mining stages and defines the set of activities to complete each stage.  

The diagnostic codes available within electronic health records result from diagnos-

tic decisions made by clinical specialists after considering  the patient’s health problem 

[13]. Jutel [14] described the diagnosis as a process of assessing and making a formal 

judgement based on a specific physical symptom that takes place at a particular time 

involving both patient and doctor. Once the disease is determined it is recorded in the 

EHR using standard  diagnostic codes such as the World Health Organisation’s Inter-

national Classification of Diseases (ICD) [15]. 

3 Method 

The goal of this case study was to identify patients’ disease trajectories using a process-

mining approach. We conducted a retrospective cohort study of patients who were ad-

mitted to critical care using the MIMIC-III database as our data source [16]. The 

MIMIC-III database contains a detailed record of patients’ clinical care that has been 

de-identified to respect the sensitive nature of the data. It is available online to research-

ers (https://mimic.physionet.org) under an open access policy. We obtained access 

through two mandatory steps: a training program in human research subject protections 

and a data user agreement. The Process Mining Project Methodology (PM2) was fol-

lowed in this study as the methodology allows us to have multiple research questions 

that require iterations of analyses [17]. 

3.1 Data source for the case study 

MIMIC-III provides a database of de-identified electronic health records containing the 

medical history from 2001 to 2012 of 46,520 critical care patients extracted from the 

EHR of the Beth Israel Deaconess Medical Centre in Boston, USA [16]. The database 

includes data on patient demographics, laboratory tests, diagnostic codes (in ICD-9 

coding standard), medications, bedside monitoring, clinicians’ notes and reports, and 

death records (linked to Social Security Death Index for outpatient death). As part of 

the anonymisation process, the timestamps used in the MIMIC-III dataset have been 

intentionally shifted into the future (between 2100 and 2200) by a random offset gen-

erated for each patient. This means that the sequence of disease codes and the time 

intervals between disease codes has been preserved for individual patients but no com-

parisons between patients are possible. This does not affect disease trajectory mining, 

but does limit other process-mining approaches such as the identification of bottle-

necks. Our group has experience of applying process mining to MIMIC-III and in ear-

lier work have published a data quality assessment on the suitability of the various 

MIMIC-III data components that are compatible with process mining [18].  

https://mimic.physionet.org/
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3.2 PM2 for Disease Trajectory Mining 

In this section, we identify those sections of the PM2 that we have adapted for disease 

trajectory mining. For a full understanding of the PM2 method see [17].  

In Stage 1 (Planning), our research questions were identified from a literature review 

and confirmed by a project team composed of a clinician, and epidemiologist and pro-

cess mining and data science researchers. 

In Stage 2 (Extraction), we defined the scope by determining the granularity level of 

data, the time period, and attributes of interest. The MIMIC-III database contains ad-

missions of adult patients aged 16 years old or older [16] who were admitted to the 

hospital between 1 June 2001 and 10 October 2012. Only patients with at least two 

admissions were selected to capture the progression of the disease. Patients were fol-

lowed up for mortality status until the last available discharge as the last censoring date 

and time for those who died within the hospital. The censoring date for patients who 

died outside of the hospital is the date recorded in the social security master death index 

in the MIMIC-III database. We used the first 3-digit ICD-9 codes to indicate diagnoses, 

[19] but excluded codes known not to be related to development of diseases, e.g. ad-

ministration codes. Event data were extracted from the ADMISSIONS, PATIENTS, 

and DIAGNOSES_ICD tables in MIMIC-III database as the input for creating an event 

log (Table 1). The time of admission was used as the activity timestamp and the diag-

nostic code as the activity name. The patients were grouped according to their age in 

bands of 5 years. The attribute of age group was calculated from the patient’s age at 

first admission. 
In Stage 3 (Data Processing), we created the event log as defined in the PM2 by 

creating the views, then filtering and enriching them. The case identifier for each event 
was taken from the patient identifier (subject_id), the diagnostic code was used as the 

event name (diagnosis_code), and the admission time as the timestamp 

(admittime). The event log was filtered by removing recurring diagnostic codes 
(retaining the first occurrence), then reapplying the exclusion of patients with only one 
diagnostic code. The sequences of diagnostic codes for each patient in the event log 
informed a set of ordered pairs of diagnostic codes, D1→D2, where the diagnostic code 
D1 preceded the diagnostic code D2. For example, a patient’s event log, D1→D2→D3, 
informed two ordered pairs of diagnostic codes, D1→D2 and D2→D3. We excluded 
ordered pairs that occurred only once. To measure the strength of association between 
the ordered pairs, we compared the probability of diagnosis D2 occurring among patients 
who did and did not have a D1 diagnosis previously in the event log. This relative risk 
(RR) [20] indicated whether the D2 diagnosis was more incident in the group with a D1 
diagnosis (RR > 1), less incident in the group with a D1 diagnosis (RR < 1), or equivalent 
(RR = 1). The RR is calculated as  

  𝑅𝑅 =
(𝑎∕(𝑎+𝑏))

(𝑐/(𝑐+𝑑))
 (1) 

where a is the number of patients having D1 and D2, b is the number of patients having 

D1 but not D2, c is the number of patients without having D1 but having D2, and d is 

the number of patients neither having D1 nor D2. 
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Table 1. Source of the required data from MIMIC-III database 

Variables Table source in 
MIMIC-III 

Field name 

Case identifier PATIENTS subject_id 

Event DIAGNOSES_ICD hadm_id, icd9_code, seq_num 

Activity name DIAGNOSES_ICD icd9_code (first 3 digits) 
ADMISSIONS hospital_expire_flag 
PATIENTS expire_flag (translated into 1:Dead, 0:End of data) 

Time stamps ADMISSIONS admittime,dischtime, deathtime 

PATIENTS dod, dod_hosp, dod_ssn, 

Sex PATIENTS gender 

Age* 
 

PATIENTS dob 

ADMISSIONS admittime 

Age group** PATIENTS dob 

 ADMISSIONS admittime 

* the age calculation using PATIENT’s dob and ADMISSIONS’s admittime. 

** the variable was added to group the patients’ age. 

Following Jensen et al [7], only pairs with RR > 1 were carried forward for further 

processing. For a given pair of diagnoses D1 and D2, it was possible for both D1→D2 

and D2→D1 trajectories to satisfy the RR > 1 threshold. Our goal was to identify dis-

ease trajectories that were acyclic, so we carried forward the dominant directionality of 

a given pair of diagnostic codes, only. We applied one-tailed binomial tests [21] to 

define the dominant directionality of pairs, i.e. D1→D2 or D2→D1. Using a signifi-

cance level of 𝛼 = 0.05, only ordered pairs of diagnostic codes with one statistically 

significant direction were carried forward to define the final pairlog.  

The final pairlog was transformed back into an event log and recurring diagnoses in 

each trace were merged to avoid loops. The event log was then enriched by adding 

attributes of age at admission, sex, age group and the mortality status. These attributes 

were not used to define the disease trajectory models, but allowed post-hoc analyses to 

determine differences between disease trajectories according to each attribute. The en-

riched event log was then loaded into ProM, an open-source process mining tool 

(https://promtools.org). A START and END event was added to every case in the event 

log to provide common start and end points of traces. The final event log then converted 

into the XES format. Common traces were grouped in trace variants using the Explore 

Event Log (Trace Variants/ Searchable/ Sortable) feature in ProM [22]. 

In Stage 4 (Mining and Analysis) we used ProM to analysed the event log to identify 

unique trace variants, performed process discovery, visualised the discovered model 

and performed conformance checking. For process analysis, we calculated descriptive 

summary statistics of the disease trajectories that were identified, including stratifica-

tion by patient groups. The event log was visualised using the Explore Event Log (Trace 

variants/ Searchable/ Sortable). The Interactive Data-aware Heuristics Miner (iDHM) 

[23] plug-in was used to discover the disease process models.  

The quality of the discovered models were evaluated using replay fitness, precision 

and generalisation [24]. Replay fitness is a measure of how many traces from the log 

can be reproduced in the process model, with penalties for skips and insertions. Preci-

sion is a measure of how ‘lean’ the model is at representing traces from the log. Lower 

https://promtools.org/
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values indicate superfluous structure in the model. Generalisation is a measure of gen-

eralisability as indicated by the redundancy of nodes in the model; The more redundant 

the nodes, the more variety of possible traces that can be represented. The value of each 

measure represents by a number between 0–1. Discovery and conformance checking 

used plugins in ProM. The Replay a Log on Petri Net for Conformance Analysis plug-

in for measuring the fitness [25], Align-ETConformance plug-in [26] for the precision, 

and the Measure Precision/Generalization plugin for measuring the generalisation. 

Other tools used in this study were PostgreSQL as the database management system of 

MIMIC-III, and Python through Jupyter Notebook [27]. 

4 Results 

An event log was extracted from an EHR to identify disease trajectories, pairs of diag-

noses were identified and analysed for correlation measurement and tested for direc-

tionality. The discovery algorithm is applied to produce the disease trajectory model 

and represented using the directly-followed graph. 

In Stage 1 (Planning), we aimed to mine the disease trajectory agnostically without 

any specific selection of diagnosis and time window. Following the literature review in 

section 2, we defined the main research question as: (Q1) Can disease trajectories be 

identified using a process-mining approach? Further questions added which were  mo-

tivated by the frequently posed question for process mining in healthcare [28]: (Q2) 

What are the most followed trajectories and what exceptional trajectories are fol-

lowed?(Q3) Are there differences in trajectories followed by different patient groups 

(by sex, by age group, by mortality status)? (Q4) What are the longest and shortest 

average time transition trajectories? 

In Stage 2 (Extraction), Of the 58,976 unique admissions in MIMIC-III from 46,520 

patients, there were 6,984 unique ICD-9 diagnostic codes used for 651,000 diagnoses. 

From this dataset, we excluded 172,685 (26.5%) diagnostic codes that are medically 

known to be codes related to external factors not directly related to the development of 

diseases [5], including pregnancy (ICD-9 3-digit codes 630-679, 760-779), general 

symptoms and signs not related to a disease (780-799), external cause (800-999, E800-

E999), and administration (V01-V89). We further excluded 436,483 (67%) secondary 

diagnostic codes and focused on the 41,832 primary diagnostic codes whilst there will 

be valuable opportunity in exploring the secondary diagnostic codes. 

In Stage 3 (Data Analysis), we composed the selected variables in a way that follows 

the minimum requirements of event log (see Fig. 1.a). The traces of each patients are 

illustrated in Fig. 1.b. We removed 2,692 (16.2%) recurrent diagnoses, retained the first 

occurrence, excluded patients with only one admission, and subsequently excluded pa-

tients who were less than 16 years old at their first ever admission. A total of 4,911 

patients remained in the event log consisting of 11,725 diagnostic codes. Fig. 1 shows 

the transformation of event logs into a log of ordered pairs of diagnostic codes (pair-

log)(see Fig. 1.c). The resulting pairlog contained 6,814 ordered pairs of diagnostic 

codes. Only 3,781 pairs remained after filtering for RR > 1 and the binomial tests for 
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directionality suggested there were 826 ordered pairs of diagnostic codes with a statis-

tically significant dominant direction. The resulting data contained 796 traces where 

each trace represents a patient’s disease trajectory. 
 

 

 

 
 

 
Fig. 1. Illustration of the transformation steps of event log for pairwise analysis. (a) The 

extracted event log from MIMIC-III; (b) the illustration of traces of diagnoses for each patient; 

(c) the transformed event log into pairlog. 

 

In the last step of filtering, we transformed the pairlog back to an event log and 

enriched with age at admission, sex, age group and the mortality status. We then loaded 

the enriched event log into ProM, artificial ‘START’ and ‘END’ events were added and 

then analysed the trace variants using the Explore Event Log feature. Among the 796 

traces, we further removed twenty traces that were unique to a single, individual pa-

tients as part of good anonymisation practice. Finally, the 776 common traces found in 

the event log were grouped into 81 trace variants. 

In Stage 4 (Mining and Analysis), there were eighty one unique trace variants in-

formed the processing discovery algorithms to answer the Q1. The conformance of the 

discovered disease trajectory model demonstrated fitness = 0.93, precision = 0.94, and 

generalisation = 0.92. Further evaluation was done by 5-folds cross-validation where 

the original event log was randomly divided into five groups of sub-event log equally. 

One sub-event log was used as the validation data and the remaining four sub-event 

logs as training data. The cross-validation process was done five times to allow each 

sub-event log used once as the validation data. The average value from the cross-vali-

dation are expected to be lower than the conformance, resulting fitness = 0.92 (SD: 

0.006), precision = 0.82 (SD: 0.06), and generalisation = 0.88 (SD: 0.02). This suggests 

that the discovered trajectory model (Fig. 2) is robust to sampling, allows the traces 

seen in the event log, is precise enough to not allow behaviour unrelated to what was 

seen in the event log, and general enough to reproduce future behaviour of the trajecto-

ries. 

subject_id diagnostic_code timestamp 

17 745 27/12/2134 07:15 

17 423 09/05/2135 14:11 

21 410 11/09/2134 12:17 

21 038 30/01/2135 20:50 

124 433 24/06/2160 21:25 

124 441 17/12/2161 03:39 

124 440 21/05/2165 21:02 

124 569 31/12/2165 18:55 

 

(a) The extracted event log 

 

subject_id diagnostic_code timestamp 

17 745 27/12/2134 07:15 

17 423 09/05/2135 14:11 

21 410 11/09/2134 12:17 

21 038 30/01/2135 20:50 

124 433 24/06/2160 21:25 

124 441 17/12/2161 03:39 

124 440 21/05/2165 21:02 

124 569 31/12/2165 18:55 

 

(a) The extracted event log 

 

subject_id Antecedent Subsequent Time1 Time2 

17 745 423 27/12/2134 07:15 09/05/2135 14:11 

21 410 038 11/09/2134 12:17 30/01/2135 20:50 

124 433 441 24/06/2160 21:25 17/12/2161 03:39 

124 441 440 17/12/2161 03:39 21/05/2165 21:02 

124 440 569 21/05/2165 21:02 31/12/2165 18:55 

   

(c) The pairlog 

  

 

subject_id Antecedent Subsequent Time1 Time2 

17 745 423 27/12/2134 07:15 09/05/2135 14:11 

21 410 038 11/09/2134 12:17 30/01/2135 20:50 

124 433 441 24/06/2160 21:25 17/12/2161 03:39 

124 441 440 17/12/2161 03:39 21/05/2165 21:02 

124 440 569 21/05/2165 21:02 31/12/2165 18:55 

   

(c) The pairlog 

  

 

#17: 745→423 

#21: 410→038 

#124: 433→441→440→569 

 

(b) The trace of diagnosis 
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Fig. 2. The directly-follow graph representation of Disease Trajectory Model of Critical Care 

patients in MIMIC-III with the minimum case frequency = 6. 

In respond to the Q2, among 776 patients there are 81 distinct trajectories (Table 2). 

The most-followed trajectory (n=80; 10.3%) was acute myocardial infarction to is-

chemic heart disease, which is consistent with the published literature [7, 29, 30]. Sep-

ticaemia occurred most frequently (n=212; 27.3%), both as a precedent (n=50; 6.4%) 

and subsequent (n=162; 20.9%), with mortality in the end (n=143; 66.9%). This sup-

ported previous findings that it is associated with morbidity and mortality [16, 31]. 

There are three exceptional trajectories of two patients each (0.26%) (Table 2). 

Table 2. The three most-common and least-common trace variants. 

Traces (%) Trace Variant Median (months) Dead (%) Male (%) 

80 (10.31%) START→410→414→END 6.5 75 70 

62 (7.99%) START→410→428→END 3.9 72.58 54.84 

45 (5.80%) START→430→437→END 3.9 4.44 35.56 

… … … … … 
2 (0.26%) START→410→427→486→END 28.3 100 50 
2 (0.26%) START→507→491→482→END 43.6 50 100 
2 (0.26%) START→518→250→038→END 14.6 100 0 

ICD-9 Codes translation: 038 = Septicaemia, 250 = Diabetes mellitus, 410 = Acute myocardial infarction, 

414 = Ischemic heart disease, 427 = Cardiac dysrhythmias, 428 = Heart failure, 430 = Subarachnoid haem-

orrhage, 437 = Other and ill-defined cerebrovascular disease, 482 = Other bacterial pneumonia, 486 = Pneu-

monia, organism unspecified, 491 = Chronic bronchitis, 507 = Pneumonitis due to solids and liquids, 518 = 

Other diseases of lung. 
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The third question was (Q3) Are there differences in trajectories followed by dif-

ferent patient group? We answered the question by comparing trajectories by sex (male, 

female) and age band (18-34 years, 35-64 years, and >64 years). The male cohort con-

sisted of 447 patients with the median duration of follow-up 6.98 months (IQR 1.6 – 

28.2) where 252 cases (56.3%) ending in death. The most-common trajectory was acute 

myocardial infarction followed by other forms of chronic ischemic heart disease (56 

cases, 12.5%) with median interval 6.5 months (IQR 1.5 – 35.3). In the female cohort, 

there were 329 patients with the median duration of follow-up 7 months (IQR 2 – 24.4) 

where 176 cases (54.4%) ending in death. The most-common trajectory was subarach-

noid haemorrhage followed by other and ill-defined cerebrovascular disease,(29 cases, 

8.8%) with median interval 3.4 months (IQR 2.3 – 7.5). The most-followed trajectory 

in a group of 18 to 34-year-old cohort was diabetes followed by hypertensive chronic 

kidney disease (3 cases) with median interval 55.8 months (IQR 33 – 56.5). For the 

group of 35 to 64 years, there were 44 cases (14.5%) with acute myocardial infarction 

followed by ischemic heart disease, with median interval 7.8 months (IQR 1.9 – 39.7). 

Among 329 cases in this age group, there were 133 cases (40.4%) ending in death. 

Patients in >64 years, there were 293 (68.1%) deaths while the most-common trajectory 

was acute myocardial infarction followed by heart failure, with median interval 4.7 

months (IQR 1.5 – 21.8). 

The fourth question was (Q4) What are the longest and shortest average time tran-

sition trajectories? The longest disease progression at 63 months was Ischemic heart 

disease to Diverticula of intestine while the shortest progression was Gastrointestinal 

hemorrhage to Liver abscess and sequelae of chronic liver disease with average time 

transition is less than a month (0.98) (Table 3). 

Table 3. The three longest and shortest average time interval trajectories in MIMIC-III. 

Antecedent Subsequent Mean* Median (IQR)** 

A. The three longest average time interval trajectories (descending) 
Chronic ischemic heart disease Diverticula of intestine 63 75.9 (54 – 84.8) 

Chronic ischemic heart disease Occlusion of cerebral arteries 52.7 51.2 (40.4 – 52.6) 

Chronic ischemic heart disease Heart failure 46 41.5 (4.6 – 89.7) 

B. The three shortest average time interval trajectories (ascending) 

Gastrointestinal hemorrhage 
Liver abscess and sequelae of 

chronic liver disease 
0.98 0.81 (0.6 – 1.3) 

Other diseases of endocardium Other diseases of pericardium 1 0.8 (0.6 – 1.13) 

Chronic bronchitis Other bacterial pneumonia 2.2 2.2 (1.6 – 2.7) 

*Mean is in months. **Median is in months (IQR); IQR = interquartile range. 

5 Discussion 

We present a case study of 776 patient admissions associated with 81 different disease 

transitions to demonstrate the feasibility of using a process-mining approach to reveal 

disease trajectories using a hospital electronic health record database. We show that the 

PM2 framework is suitable for mining disease trajectories and is complemented by the 

addition of descriptive summary statistics in Stage-3 (Data Processing). Our approach 



10 

applies a number of transformations to the data, which were adapted from published 

disease trajectory methods for constructing selected pairs of diagnoses with strong cor-

relation, followed by testing the pairs’ directionality to form the trajectories. 

Process mining offers techniques to discover disease trajectories and measure the 

quality of the algorithm to discover the trajectory model. In this work we presented 

replay fitness, precision, generalisation and cross-validation to validate the model. The 

process-mining approach opens opportunities to cross-reference discovered disease tra-

jectories with other critical care event data by defining workflows that can actioned 

using widely-available software. By conducting conformance checking, we have the 

indicators to show if the discovered model has a good quality. We note that the earlier 

study by Jensen et al. [7], did measure the robustness of their discovered disease trajec-

tory model with one indicator that is similar to the replay fitness in process mining. 

This approach is useful to validate that the final model conforms closely to the data. 

A particular benefit of the process-mining approach to constructing disease trajecto-

ries is that it may provide summaries of cases, events and time interval between occur-

rences of disease. For example, our method identified the trajectory of acute kidney 

injury (AKI) (584) followed by septicaemia (038) with an average interval of 16.22 

months. This finding supports the conclusion of [32] where sepsis was a frequent con-

sequence after AKI in intensive care setting. Also, the process-mining approach could 

provide an estimation of sepsis development after AKI as suggested in [33]. Our 

method also incorporates additional case attributes that easily facilitate outputs to be 

stratified by specific characteristics, e.g. sex, age group, and mortality status. For ex-

ample, although the data were not pre-stratified for females, process mining tools made 

it easy to query the event log to reveal a dominant trajectory in females – subarachnoid 

haemorrhage (430) followed by other and ill-defined cerebrovascular disease (437) – 

that agrees with previous research [34]. 

6 Conclusion 

In this paper, we have presented the mining of disease trajectories using a process-

mining approach. The mining used the MIMIC-III dataset which is comparable to many 

databases from EHR systems in use at hospitals across the world. Our study included 

the use of PM2 framework to mine a representative disease trajectory model from an 

EHR and addressed quality dimension standards. This study opens opportunities for 

future works in implementation of the technique using population sized EHR data. We 

believe the association of pairs of diagnoses might be improved by null hypothesis sig-

nificance testing of relative risk rather than magnitude-based testing. Future work might 

assess the sensitivity of the method to the choice of process discovery algorithm used 

to mine the disease trajectory model. 
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Abstract. In healthcare, more and more process execution information
is stored in Hospital Information Systems. This data, in conjunction
with data-driven process simulation, can be used, e.g. to support hospi-
tal management with Capacity Management decisions. However, real-life
event logs in healthcare often suffer from data quality issues, affecting
the reliability of simulation results. In this work, we illustrate the ef-
fects of disregarding data quality issues on simulation outcomes and the
importance of domain knowledge using a case study at the radiology
department of a hospital. Current literature on data-driven process sim-
ulation acknowledges the need for domain expertise but does not pro-
vide a framework for conceptualising the involvement of domain experts.
Therefore, we propose a novel conceptual framework which interactively
involves experts during data-driven simulation model development.

Keywords: data-driven process simulation · data quality · domain knowl-
edge · interactive modelling · healthcare processes

1 Introduction

Worldwide, healthcare systems are under constant pressure. Increasing popu-
lation numbers, lifestyle factors, ageing populations, and new technologies are
the main drivers for increasing healthcare expenses. Simultaneously, healthcare
budgets are under pressure due to national budget deficits and savings [14].
Healthcare managers have to improve their care processes to maintain high-
quality care for all patients. One key aspect of ensuring this is efficient Capacity
Management (CM), which is used to determine the suitable levels of resources,
such as equipment, facilities, and staff size [28].

To support hospital management during CM decisions, Business Process Sim-
ulation (BPS) can be used to determine suitable resource levels objectively. BPS
uses a (computer) model to imitate the process. This allows to evaluate the effect
of various process modifications without actually implementing them into, nor
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disrupting, the real process [21]. For instance, the effect on throughput rates and
patient waiting times of installing an additional X-ray scanner can be simulated
to determine suitable equipment levels.

Conducting a simulation study is often time-consuming and builds upon sub-
jective inputs, such as interviews and observations. The emerging field of data-
driven process simulation in Process Mining (PM) can overcome some of the
limitations of “traditional” simulation model development by using data. Data-
driven process simulation refers to the automated discovery of a simulation model
from process execution data, i.e. an event log [9]. A key challenge in this field is
data quality, given its strong impact on the reliability of the simulation results
[31]. Because data quality issues are often encountered in healthcare event logs,
it is imperative to assess these issues and correct them if needed. This will re-
quire domain knowledge. Current literature on data-driven simulation does not
provide a clear framework to involve domain experts in model development.

This paper demonstrates the need for interactive data-driven process simu-
lation in healthcare by assessing the impact of data quality issues on simulation
results. To this end, a case study at the radiology department of a hospital is
considered. In addition, we propose a novel conceptual framework which struc-
tures the integration of domain knowledge in the interactive development of
data-driven simulation models.

The remainder of this paper is structured as follows. Section 2 gives an
overview of the related work. The context of the case study is presented in
Section 3. The experimental design, results, and discussion are presented in Sec-
tion 4. Section 5 introduces our proposed framework for interactive data-driven
process simulation. The paper ends with a conclusion in Section 6.

2 Related Work

This work relates to three key domains: (i) simulation for CM decisions in health-
care, (ii) data-driven process simulation, and (iii) data quality in process mining.
The following paragraphs give a brief overview of these domains.

Simulation for Capacity Management Decisions in Healthcare. Ca-
pacity Management decisions in healthcare are concerned with determining the
suitable levels of resources, such as staff size, equipment, and facilities [28]. In
literature, simulation has been used to determine the required number of beds in
general surgery [30]; the number of nurses, doctors, and buffer beds in an Emer-
gency Department (ED) [7]; and the number of computed tomography (CT)
scanners in a radiology department [27]. Within the radiology department, the
context of our case study, Vieira et al. [32] gave an overview of Operations Re-
search (OR) techniques – which includes simulation – for optimising resource
levels and scheduling. For further reference on CM and the use of simulation in
healthcare, the reader is referred to one of the existing review papers [26,28,33].

Data-Driven Process Simulation. Data-driven process simulation aims
to “discover” BPS models from event logs automatically [9]. While existing
PM research can support the discovery of individual BPS model components
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[19] – e.g. control-flow discovery, decision mining, or organisational mining –
less work has been devoted to integrating all these components into a single,
simulation-ready model. Rozinat et al. [24] made a first attempt by discovering
Coloured Petri Nets (CPNs) to describe the control flow. In addition, gate-
way routing logic and resource pools were also included. Later, the authors ex-
tended their method with activity execution times and case inter-arrival times
[25]. Khodyrev and Popova [16] described a similar approach. However, the
resource perspective was not included, assuming no resource constraints [16].
Gawin and Marcinkowski [13] provided support for activity durations, control-
flow, resources, gateway routing logic, resource schedules, and inter-arrival times.
However, the latter two were not automatically derived from data and had to be
defined by domain experts [13]. ClearPath [15] provides a methodology for dis-
covering and simulating Care Pathways (CPs). Their approach follows an agile,
iterative method which facilitates the interaction between the modeller and do-
main expert, but the obtained process models still have to be manually recreated
in their simulation tool NETIMIS [15]. Simod was the first tool to automatically
integrate all components into a single, simulation-ready model to support BPS
[6]. In addition, Simod is also capable of measuring the accuracy of the derived
model and improve it using hyperparameter optimisation [6].

Data Quality in Process Mining. Real-life event logs tend to suffer from
data quality issues, especially when they originate from flexible environments
with substantial manual recording, such as healthcare [5,23]. These issues in-
clude missing events and incorrect timestamps, where the latter is often caused
by batched registrations by healthcare staff [18,31]. Given the potential impact
of event log quality issues on the reliability of PM outcomes, research attention
on this topic is increasing. Research efforts are centred around three key topics.
Firstly, several frameworks are developed which define event log quality issues
[5,29,31]. For instance, Bose et al. [5] define 27 event logs quality issues and
group them in four broad classes (i.e. missing, incorrect, imprecise, and irrele-
vant data). Secondly, research is performed on data quality assessment, targeting
the systematic identification of event log quality issues. In this respect, the R-
package DaQAPO [20], the log query language QUELI [1], and the CP-DQF
[12] for Electronic Health Records (EHRs) provide tools and frameworks to op-
erationalise data quality assessment. They are based on the event log quality
issues defined in Vanbrabant et al. [31], Suriadi et al. [29], and Bose et al. [5],
respectively. Thirdly, heuristics have been developed which tackle specific data
quality issues, e.g. adding missing events [10], imputing missing case identifiers
[3], and handling event ordering issues [11].

3 Background: Capacity Management at the Radiology
Department

To illustrate the impact of data quality issues in the context of data-driven
simulation, a real-life case study is used. This section introduces the case study.
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3.1 General Context

The case study relates to a project at the radiology department of a hospital.
Hospital management is preparing plans to build new facilities and is requesting
input from each department regarding the required capacity. For the radiology
department, this relates to the number of examination rooms – i.e. scanners –
and the size of the waiting rooms – i.e. the number of seats – for each examination
room. The radiology department wants to approach this Capacity Management
problem in a data-driven way.

To support this data-driven analysis, process execution data is obtained from
the Radiology Information Systems (RIS). This system supports the entire pro-
cess flow, of which a simplified representation is shown in Fig. 1. The process
starts when a patient arrives at the registration desk, after which (s)he is regis-
tered. Afterwards, the patient will wait in the waiting room until (s)he is called
into the examination room. A nurse helps the patient onto the scanning table and
correctly positions the scanner. Next, the image is created. In case the patient
needs an additional scan of the same type, e.g. an X-ray scan of both shoulder
and neck, this image can be made without leaving the room. After all required
scans have been made, the patient can leave the examination room, and the
nurse will post-process the images. If the patient still requires additional scans –
of a different kind than the previous (e.g. also a CT scan) – (s)he will go to the
waiting room of the other examination room. After all scans have been made,
the patient can leave the radiology department and return home. Note that the
interpretation of the scans by a radiologist is out of scope as it does not impact
the required scanner and waiting room capacity.

Fig. 1. Simplified process flow of (ambulatory) patients at the radiology department.

To solve the CM problem in this process, Discrete-Event Simulation (DES) is
used due to the stochastic nature of the process. DES uses simulation to compare
policy alternatives before implementing them in practice [33]. Arena v15 [2] was
used to simulate the model.

In a DES model, entities are dynamic objects which move through the pro-
cess and trigger the execution of activities [19]. In this case study, entities are
patients visiting the radiology department. Four patient types are distinguished:
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(i) ambulatory patients (A) which are outpatients, (ii) day hospital patients (D)
which are admitted to the hospital for at most one day, (iii) hospitalised patients
(H) which are inpatients, and (iv) emergency patients (S) which are transferred
from the Emergency Department (ED).

The process flow depicted in Fig. 1 actually gives an overview of ambulatory
patients. Nevertheless, the flow of the other patient types is, in essence, the same.
Only the way patients arrive and where they wait are different. Hospitalised and
day hospital patients will wait in their room until they are called in. Emergency
patients will wait at the ED.

Depending on the type of scan, a different scanner – and thus a different
examination room – is used. In this case study, there are six different types of
scans of interest: angiogram (ANGIO), computed tomography (CT), echocardio-
gram (ECHO), mammogram (MAMMO), magnetic resonance (MR), and X-ray
(RX). CT, ECHO, MAMMO, and MR all require separate rooms. ANGIO and
RX are performed in RX rooms.

3.2 Data Description

To support the development of the DES model, two years of data from the RIS –
from March 2017 until March 2019 – was available. The dataset includes various
key timestamps for each patient visit, such as time of registration, and start and
end time of scanning. Other attributes, such as the scan type (e.g. ECHO, RX,
etc.) and patient type (e.g. ambulatory, emergency, etc.), were also recorded for
each patient visit.

The dataset contains 404,750 individual patient visits. The proportions per
patient type were 60%, 23%, 15%, and 2% for ambulant, hospitalised, emergency,
and day hospital patients, respectively. In total, 464,053 scans were recorded,
indicating that the majority of patients only needed one scan. Most scans were
RX, i.e. 45%. ECHO represented 19%, followed by MR, 16%, 14% CT, and 5%
MAMMO. A very small proportion, less than 0.001%, were ANGIO.

In the process, the activity “Create Image” (cf. Fig. 1) has the most consid-
erable impact on waiting times and throughput rates because it generally takes
longer than all other activities. Both start and end timestamps are available of
this activity and are recorded when the nurse starts and stops the scanning de-
vice, respectively. We initially expected that this activity would not suffer much
from quality issues because it is recorded automatically. However, this appeared
not to be the case.

Table 1 gives an overview of the scan duration times per scan type. According
to the data, some scans took over several years to complete. A few observations
even had a negative duration, caused by the end timestamp being recorded before
the start timestamp. Given its impact on capacity requirements, the scenario
analysis will focus on the effect of scanning time data with data quality issues
on simulation outcomes.
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Table 1. Scan execution times (in mins).

Scan Type Min Max Mean Median SD IQR
ANGIO 0.00 323,258 14,372.11 26.05 57,336.29 87.83
CT -726.53 30,605 6.73 1.97 196.86 2.23
ECHO -79.00 116,685 71.36 23.38 636.37 28.48
MAMMO -6.48 40,780 16.41 2.98 531.00 1.35
MR 0.00 946,449 161.22 11.48 9,679.90 6.90
RX -1,031.63 2,109,457 22.69 0.55 5,111.25 1.20

4 Scenario Analysis: The Impact of Data Quality Issues

4.1 Experimental design

To illustrate the impact of data quality issues w.r.t scanning times, we consider
two scenarios:

– Scenario 1 – Direct sampling: In this scenario, actual observed data is
sampled. This is useful when no theoretical distribution, such as the Gaus-
sian, exponential, or gamma distribution, fits the data well. However, the
disadvantage is that only the observed values can be used, which is problem-
atic for smaller datasets [17].

– Scenario 2 – Distribution fitting: In this scenario, a distribution is fit-
ted to the observed data. We used the distribution with the least worst fit
because not a single distribution fitted the data well. With this approach,
we follow the state-of-the-art of data-driven BPS techniques.

For each scenario, three alternative data filtering approaches are compared:

– Alternative 1 – Validated filtering (VF): In this alternative, which is
the baseline, we used filtered data validated by domain experts. For scenario
2, we had to use empirical distributions for this alternative as none of the
theoretical distribution provided a good fit. In the other two alternatives, we
always used theoretical distributions.

– Alternative 2 – No filtering (NF): Here, we used the unfiltered data
directly. Only observations less than zero were filtered out because the sim-
ulation model cannot handle negative activity durations.

– Alternative 3 – Context-agnostic filtering (CAF): Even without any
domain knowledge, one would immediately notice that the maximum values
in Table 1 are unrealistic. Therefore, this alternative uses filtered data to
exclude anomalies. We adopted the commonly used box plot rule to detect
anomalies in the absence of domain knowledge. Any observation smaller than
Q1 − 1.5IQR or larger than Q3 + 1.5IQR is removed [8]. If the lower limit
was less than zero, zero was used instead.

The length of the simulation run was set at two years for each alternative
in each scenario. Initial experimentation showed that outliers in Alternative 2
caused severe queue accumulation, which resulted in i.a. extreme waiting times.
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Therefore, we integrated a weekly “reset”, which removed all patients from queues
and ongoing scans. We will refer to this reset as “flushing” and kept track of the
weekly number of flushed patients.

To compare the alternatives, we focused on patient throughput and waiting
times. Moreover, we looked at the flush count mentioned above. To measure the
true effect of the different distributions used in each alternative, common random
number streams (CRNs) are used. Consequently, the same random numbers are
sampled across all alternatives. To compare the difference between alternatives,
we used the non-parametric Wilcoxon-Mann-Whitney (WMW) test. Instead of
using the original observations, ranks are used to compare the difference between
two samples. This has the advantage that no underlying distribution is assumed
[22]. To control the false discovery rate (FDR) of the multiple testing problem,
we used the Benjamini–Yekutieli procedure [4] to adjust the p-values.

4.2 Results

Throughput Times The throughput time measures the elapsed time between
the patient’s arrival and departure. Because a patient could require multiple
scans, the average throughput time per examination is considered by dividing the
throughput time of a patient by the number of scans. Patients who were “flushed”
did not complete all scans and are therefore excluded from this measure.

As shown in Table 2, the throughput times for NF are much higher than VF,
e.g. in Scenario 2, the average throughput time per examination for hospitalised
patients is almost 100 times longer. The differences between CAF and VF are
also statistically significant, albeit much smaller. For day hospital patients, rep-
resenting 0.5% of the observations for this measure, the differences between VF
and CAF were not statistically significant. Nevertheless, important differences
in mean throughput times are observed due to larger outlier values for CAF.

Waiting Times The waiting time is the time a patient spends in a queue
before undergoing a scan. Table 3 shows comparable differences as the through-
put times. Again, large differences between VF and NF are observed, e.g. the
average waiting time for hospitalised patients is more than 150 times longer in
NF than VF for Scenario 2. For day hospital patients, only the difference be-
tween VF and CAF in Scenario 1 is not significant, even though the absolute
difference between the means is, again, rather large, indicating the presence of
outliers.

Flush Counts The more patients are flushed at the end of a week, the more
this indicates that queues have accumulated throughout that week. Especially in
the NF alternative, many patients have to be flushed to “reset” the process at the
end of a week, in some cases even more than a thousand patients in total. The
differences between VF and CAF are much smaller, i.e. on average less than one
patient more was flushed in CAF. However, it should be noted that sometimes
the maximum number of flushed patients in CAF was much higher than in VF,
e.g. for Scenario 2, VF flushed at most two hospitalised patients, whereas in
CAF this was at most 46. For ambulatory patients, this was smaller, i.e. nine
and seventeen, respectively.
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Table 2. Throughput times per examination (in min) per patient type (A, D, H, S)
and alternative (VF, NF, CAF).

ADHS Model 1 Model 2 Mean Model 1 Mean Model 2 Adj. p-value Significance
Scenario 1

A VF NF 25.8493 556.622 <0.0001 ****
A VF CAF 25.8493 45.8470 <0.0001 ****
D VF NF 25.0905 129.1714 0.0077 **
D VF CAF 25.0905 42.2703 0.6525 ns
H VF NF 29.6365 606.8702 <0.0001 ****
H VF CAF 29.6365 34.1812 <0.0001 ****
S VF NF 13.4890 92.7292 <0.0001 ****
S VF CAF 13.4890 16.3655 <0.0001 ****

Scenario 2
A VF NF 25.8622 938.1933 <0.0001 ****
A VF CAF 25.8622 48.8646 <0.0001 ****
D VF NF 24.6727 363.3950 <0.0001 ****
D VF CAF 24.6727 118.0489 0.1479 ns
H VF NF 29.6764 2,740.0265 <0.0001 ****
H VF CAF 29.6764 253.3411 <0.0001 ****
S VF NF 13.5586 76.9503 <0.0001 ****
S VF CAF 13.5586 17.5182 <0.0001 ****

****: p-value < 0.0001, ***: p-value < 0.001, **: p-value < 0.01, *: p-value < 0.05, ns: not signif.

Table 3. Waiting times (in min) per patient type (A, D, H, S) and alternative (VF,
NF, CAF).

ADHS Model 1 Model 2 Mean Model 1 Mean Model 2 Adj. p-value Significance
Scenario 1

A VF NF 8.7470 536.3071 <0.0001 ****
A VF CAF 8.7470 26.4227 <0.0001 ****
D VF NF 10.8402 112.1685 <0.0001 ****
D VF CAF 10.8402 27.4978 1.0000 ns
H VF NF 17.3111 592.3354 <0.0001 ****
H VF CAF 17.3111 20.7817 <0.0001 ****
S VF NF 1.7663 76.4688 <0.0001 ****
S VF CAF 1.7663 3.6703 <0.0001 ****

Scenario 2
A VF NF 8.7252 912.6071 <0.0001 ****
A VF CAF 8.7252 31.3267 <0.0001 ****
D VF NF 10.3187 337.0036 <0.0001 ****
D VF CAF 10.3187 99.9275 0.0140 *
H VF NF 17.2705 2,737.3727 <0.0001 ****
H VF CAF 17.2705 243.9300 0.0140 *
S VF NF 1.7545 47.0165 <0.0001 ****
S VF CAF 1.7545 5.3972 <0.0001 ****

****: p-value < 0.0001, ***: p-value < 0.001, **: p-value < 0.01, *: p-value < 0.05, ns: not signif.
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4.3 Discussion

The results illustrate the need to consider data quality issues seriously. The unfil-
tered alternative – which completely neglects these issues – exhibits much higher
throughput times, waiting times, and flush counts than the validated baseline.
The difference between context-agnostic and validated filtering is smaller but
still highly relevant. For instance, waiting times for hospitalised patients are up
to eight times longer in CAF. However, for other performance metrics, such as
flush counts, the differences between VF and CAF are smaller.

In this case study, the cut-off points for outliers in VF and CAF happened to
be reasonably close to each other, except for echocardiograms. The domain ex-
perts indicated a maximum of 30 mins, whereas the box plot rule returned 84.64
mins. However, this does not give any guarantee for other cases as context-
agnostic filtering does not take into account the specificities of a particular do-
main in any way. Therefore, domain knowledge is always required to achieve
accurate simulation results.

When comparing the differences between the two scenarios for each alterna-
tive (i.e. comparing the outcomes under direct sampling with their counterpart
under distribution fitting), large differences are often observed between through-
put and waiting times, even though the same input data was used. A possible ex-
planation is that the theoretical distributions did not fit the data well. Therefore,
we highlight the need to report goodness-of-fit (GoF) statistics in state-of-the-
art data-driven BPS discovery algorithms and use direct sampling or empirical
distributions in case no theoretical distribution fits the data well.

5 Interactive Data-Driven Process Simulation

As illustrated in the case study, data quality issues can have a profound impact
on the reliability of simulation results. Moreover, domain knowledge plays a vital
role in the development of a simulation model. Without domain knowledge, it
is, e.g. challenging to determine whether particular observations are exceptional
– but plausible – or data errors. Even though current literature on data-driven
process simulation acknowledges the need for domain expertise for i.a. validation
purposes, no framework conceptualises how this knowledge should be incorpo-
rated.

To enhance the integration of domain knowledge in the development of data-
driven simulation models, we propose a novel conceptual framework which in-
teractively involves experts during model building. This framework, which is
visualised in Fig. 2, distinguishes three interaction cycles. In the first cycle, the
initial model is constructed. For each required modelling task (e.g. entity arrival
rate, activity durations, resource roles, etc.) – of which an overview is presented
in Martin et al. [19] – the data requirements are verified. For instance, mining
resource roles requires the presence of a resource attribute. If these requirements
are not fulfilled, the domain expert is asked for additional input to perform this
modelling task. Conversely, if the requirements are fulfilled, the quality of the
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data is assessed, and an applicable discovery algorithm is employed. Next, the
results of the discovery algorithm and detected data quality issues are presented
for a check by the domain expert. (S)he can then solve any data quality-related
issues and tweak the discovery parameters until the results are satisfactory.

The second cycle integrates all discovered model components from the first
cycle into a single, simulation-ready model. The entire model is simulated, and
the domain expert checks the preliminary results. If the simulation outputs do
not satisfactorily reflect reality, the model can be “calibrated” by altering the
simulation parameters. An estimation of the impact of the altered parameter
on simulation outcomes is delivered in real-time, so the expert does not have to
wait until the entire simulation has been completed before receiving an indication
whether the altered parameter results in the desired change.

The final and third cycle is concerned with the validation of the model.
The calibrated model from the second cycle is simulated comprehensively and
validated by the domain expert. In addition, a validation dataset – which was
not used to discover the model – can be used as well. If the desired accuracy level
is not achieved, the domain expert can modify the simulation parameters again.
The final validated model can be used for the evaluation of various scenarios and
further analyses.

Event log

Data 
Requirements

Data Quality 
Assessment

Discovery 
Algorithm

Modelling Task 1

Modelling 
Task 2

Modelling Tasks

...

Simulation Model Development

Domain Expert

Approval 
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Domain Expert
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Scenarios

Hospital Information 
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Validation Cycle 3
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Preliminary Simulation Results
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Fig. 2. Interactive data-driven process simulation framework.

6 Conclusion

Data-driven process simulation has great potential within a healthcare context,
e.g. to support hospital management with Capacity Management decisions. How-
ever, real-life data extracted from Hospital Information Systems tend to suffer
from data quality issues, which affects the reliability of simulation results. The
presented case study at the radiology department of a hospital illustrates the
impact of these issues, as well as the importance of domain knowledge. Current
literature on data-driven process simulation acknowledges the need for domain
expertise but does not provide a framework to conceptualise the involvement of
domain experts. Therefore, we propose a novel conceptual framework which in-
teractively involves experts during data-driven simulation model building. In this
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framework, a distinction is made between three cycles: an initial development
cycle, a calibration cycle, and a validation cycle.

Future work will focus on how the interaction between the domain expert and
the framework will occur more specifically. Ultimately, our goal is to implement
our framework into a tool to support the integration of domain knowledge into
the development of data-driven process simulation models. In addition, this case
study highlights the need for further research on identifying and remedying data
quality issues in a healthcare context.
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Abstract. In healthcare, process mining has been used in many case studies to 
discover and analyse process models of patient treatments. Process mining is 
generally applied to analyse the event log of patient treatments as extracted 
from the Electronic Health Record (EHR). In this study, we proposed an ap-
proach to combine the event log of patient treatments with the clinical user ac-
cess log of the hospital information system to analyse system usage during pa-
tient treatments. Our case study combined an event log of breast cancer patients 
receiving chemotherapy treatments in the Leeds Cancer Centre with the user 
access log in the hospital information system. The event log of patient records 
during chemotherapy was extracted from the EHR system. The clinical user ac-
cess log was extracted from the Splunk, a web-based log management system in 
the hospital. Combining records from those two logs has been useful to provide 
information on system usage during patient treatment. Our experiment focused 
on the GPTab, a functionality that allows clinicians during consultations to 
check on patient records on their GP visits. We applied both statistical and clin-
ical evaluations to ensure that the findings are statistically correct and clinically 
meaningful. We captured the phenomena of the decreasing number of patients 
on the subsequent cycles of chemotherapy and when GPTab has been used dur-
ing the course of chemotherapy. This approach is potentially useful for general 
cases to analyse system usage during process execution and can be applied to 
investigate the effects of system changes to process executions. 

Keywords: Process Mining, Extended Event Log, Clinical User Access Log, 
Chemotherapy, Cancer Treatment, EHR. 

1 Introduction 
As a large group of diseases, cancer is very complex and can affect any part of the 
body [1]. There are at least 65 recognised types of cancer [2]. Breast cancer is the 
most common cancer in women affecting about 12% of women in the world [3]. In 
the UK, breast cancer is one of the four most common cancer types, along with pros-
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tate cancer, lung cancer, and colorectal cancer [4]. Breast cancer [5] is diagnosed by 
physical exam, mammogram, ultrasound, MRI, blood chemistry studies, and biopsy 
of the affected area of the breast. Surgery is the primary treatment, which may be 
followed by chemotherapy or radiation therapy, or both [6]. A course of chemothera-
py [7] is usually done in six cycles, where each cycle is given 21 days after the previ-
ous one. Some patients might not be able to get a cycle of chemotherapy due to some 
adverse events, including emergency admission and neutropenia. 

Process mining is a process-oriented data science approach that uses event logs for 
discovering and analysing business process models [8]. An event log is a record of 
timestamped activities generated automatically by the information system. Process 
mining has been applied in healthcare processes [9] for quality improvement, patient 
safety, and resource optimisation in healthcare settings [10]. Our literature review of 
process mining in Oncology [11], the study of cancer, found the limited availability 
and accessibility of suitable datasets for process mining. Our earlier study explored a 
publicly available dataset for process mining in healthcare [12], [13]. In this study, we 
were fortunate in having access to explore the in-house developed PPM EHR system 
including the database, the software developers of the system, the training team, clini-
cal staff and senior clinicians involved in the process. 

Our case study is based on a de-identified extract from the Patient Pathway Man-
ager (PPM) database of the PPM EHR system [14]. The patient dataset has been used 
in the previous study to define real-life clinical pathways during chemotherapy [15]. 
This paper presents a worked example to analyse General Practitioner (GP) Tab usage 
during chemotherapy treatment on breast cancer patients. GPTab is a menu that al-
lows clinicians to access patient records in the GP system. The GPTab presents clini-
cal information (diagnosis, allergies, medications, etc.) recorded in the registered 
Leeds GPs. Accessing GP Tab during consultations in chemotherapy cycles improves 
understanding of patient condition and support decision making for patient treatment. 
We described an approach to enhance a process model through an extension of the 
event log, by combining patient records with the user access log. This approach is 
potentially useful in many other cases to enhance process mining approaches with 
user access log describing real user accessing information systems. 

2 Patient Pathways Manager (PPM) EHR System 
The PPM EHR system is used in the Leeds Teaching Hospitals NHS Trust (LTHT), 
the largest provider of specialised services in England that manages six hospitals, 
including St James’s University Hospital (SJUH) [16]. The SJUH hosts the Leeds 
Cancer Centre, one of Europe’s large cancer centres [17]. The PPM system integrates 
data from multiple systems within the LTHT, including patient admissions, treatments 
(chemotherapy, surgery, and radiotherapy), pathology, investigations, Multidiscipli-
nary Team (MDT) meetings, consultations, and outpatients. 

The PPM database contains clinical information about all patients within the hospi-
tal, including cancer patients. We gained access to the PPM database through an 
IRAS application that allows direct access to a secure SQL database on a virtual ma-
chine. The data has been checked, cleaned, and aggregated before approval for access 
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by the research team. The PPM database consists of clinical data of more than 3 mil-
lion patients, of which more than 270,000 patients have at least one cancer-related 
diagnosis. The PPM EHR system is connected to patient records in other service pro-
viders, including General Practitioners (GPs), Mental Health, and Community ser-
vices. Fig. 1 shows a screenshot of GPTab screen in the PPM EHR system. 

 
Fig. 1. Screenshot of the GPTab in the PPM EHR system, from the PPM support website [18]. 

The clinical user access log is recorded in PPM Splunk. The PPM Splunk is web-
based application management that captures real-time user access to the PPM system, 
which is useful in analysing system usage for specific functionalities. Every time a 
user views data in the PPM EHR system, the system automatically recorded the activ-
ity in the PPM Splunk. In this study, the healthcare user access log was focused on the 
GPTab access log, as a representative of functionalities related to cancer treatment. 
GPTab is a functionality that can be used by clinicians to access patient records in the 
GP system, to support clinical decisions related to patient treatment.  

3 Methodology 
The general methodology is based on the Process Mining Project Methodology (PM2) 
[19] with a focus on the Mining and analysis step (Fig. 2). 

 
Fig. 2. The general methodology (based on PM2) 
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We did the stages in the methodology in at least two iterations: once with only the 
clinical records as the input, and once with a combination of the clinical records and 
the healthcare user access log. For simplicity and ease-of-understanding, this paper 
describes only the final iteration and summarise the findings in the intermediate itera-
tions as part of the final iteration. 

The Planning stage identified the scope, the team, and the research questions in 
the study. The scope of this study was to analyse GPTab usage during chemotherapy 
treatment of breast cancer patients in the PPM system. The research questions were: 
Q1.  What are the most followed paths and the exceptional paths? 
Q2.  How did clinicians use GPTab during the course of chemotherapy? 

Our team consisted of process mining experts, clinical experts, representatives of 
the development and training teams of the PPM EHR system. We did at least one 
meeting in each stage of the study to discuss the plan, progress of the study, and vali-
dation of the findings. The discussion was done to ensure domain expert engagement 
during all stages of the study, as suggested in the ClearPath method [20]. 

The Extraction stage included the patient clinical records from the PPM database 
and the user access log from PPM Splunk. The patient clinical records are included if 
(1) the patient had at least one diagnosis of breast cancer (ICD-10 C50) and received 
epirubicin and cyclophosphamide (EC90) chemotherapy as adjuvant treatment and (2) 
the patient was first diagnosed with breast cancer between 2014 and 2018. The EC90 
is one of the most commonly used regimens in Leeds Cancer Centre in the specified 
time period. The GPTab user access records from PPM Splunk are included if clini-
cians access GP records of patients in the cohort during their cancer treatment be-
tween 2014 (when GPTab was introduced) and 2018. Combining patient clinical rec-
ords with user access records is useful to get additional data from user access log that 
is not recorded in the patient clinical records, in this study, adding GPTab access ac-
tivity to the chemotherapy pathways. The extraction stage is illustrated in Fig. 3. 

 
Fig. 3. The extraction stage, combining patient clinical records with user access records. 

The Data Processing stage consisted of creating views, aggregating events, enrich-
ing logs, and filtering logs. The views were created by focusing on the chemotherapy 
cycles of breast cancer patients. Instead of aggregating events, we used the fine-
grained event names, which are Cycle 1, Cycle 2, up to Cycle 6, representing the cy-
cle number of chemotherapy. Log enrichment added information to the event log, in 
this case, the process duration for each patient that was calculated as the number of 
days from the first activity to the last one in the recorded treatment. We also included 
Emergency and Neutropenia events as suggested by clinical experts to be the two 
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events potentially affecting chemotherapy progressions. We extracted the Emergency 
events as they were recorded in the Admission table with an Emergency Admission 
type. Neutropenia is a condition where a patient had a neutrophil count less than nor-
mal (<1.5 x 109/L). More details about those two additional events had been described 
in our previous study using the same dataset [15]. An attribute-based log filtering was 
done by filtering in selected events to include only the chemotherapy cycle events of 
patient treatment. The patient records were transformed into an event log, which con-
tains {case_id, activity, resource, timestamp}. The event log was loaded into ProM 
tools and R for analysis in the next stage. 

The Mining and Analysis stage included process discovery, conformance check-
ing [22], enhancement, and process analytics. Process discovery was done in the fine-
grained level to model chemotherapy cycles of patients in the selected cohort. The 
adjuvant chemotherapy for breast cancer patients is commonly given in six cycles, 
sequentially from Cycle 1 to Cycle 6. The main tools for process discovery were 
ProM 6.8 [24], DISCO [25],  and bupaR [26]. ProM is an academic platform that is 
widely used in process mining projects. DISCO is used in this study to get an early 
model easily, based on the fuzzy miner algorithm. bupaR is a library in R that was 
used in this study to support a more detailed statistical analysis.  

Enhancement was done by extending the event log of the patient records with the 
GPTab access log in the PPM Splunk. Fig. 4 shows a screenshot containing detailed 
data on the date and time, page address, patient id and user id recording a time when a 
clinician had accessed the GP Tab page of a patient. There is also a bar chart visualis-
ing the number of records on a daily basis. The bar chart shows an obvious pattern of 
weekday- and weekend- usages. 

 
Fig. 4. A query result in the PPM Splunk. Confidential information such as Patient ID and dates 
are blocked in black. 

The Evaluation stage was done to diagnose, verify, and validate the results of the 
previous stages. In this study, the evaluation analysed all findings from the statistics 
and clinical perspectives. The statistical evaluation was done to verify and validate the 
result quantitatively, which was later confirmed to the clinical experts and the repre-
sentative of the development team. The clinical evaluation was done to make sure that 
the findings reflected reality, supported and enhanced prior knowledge of the clinical 
experts about patient treatment. 
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4 Results and Discussion  

4.1 The Extracted Data 

We extracted Leeds patients diagnosed with breast cancer (C50) who received EC-90 
as adjuvant chemotherapy, whose GP Tab was accessed by clinicians from 2014 to 
2018. There were 738 patients included in this selection. Table 1 shows a list of the 
eight selected events for process discovery, which consists of six cycles of chemo-
therapy and two adverse events (emergency admission and neutropenia). 

Table 1. Selected Events for Process Discovery 

Event 
name 

Cycle Emergency Neutropenia 
1 2 3 4 5 6   

Patients (n) 738 725 699 487 402 380 380 412 
Percentage 100% 99% 95% 66% 55% 52% - - 
Med (days) 21 21 21 21 21 - - - 

Table 1 shows that 738 patients received Cycle 1 of chemotherapy, but the number 
decreases in the following cycles. The median duration from a Cycle to the next one 
is 21 days, which reflects the typical duration of treatment in reality. This finding has 
been discussed with clinical experts. It has been confirmed to reflect the reality where 
patients might find several conditions that prevent them from completing the course 
of chemotherapy. It is shown that among patients who started receiving Cycle 1 of 
EC-90 as adjuvant chemotherapy, only around half of them (n=380; 52%) completed 
Cycle 6. This condition needs to be explored more, to learn what were the possible 
conditions preventing patients from completing the treatment. 

4.2 Discovered Process Models and the Conformance 

We presented Table 2 to show the 15 most common trace variants out of 289 variants 
in total. Each of those 15 variants followed by at least seven patients.   

Table 2. Top Eight Trace Variants 
Var Trace Variant n  (%) 

1 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 - Cycle 5 - Cycle 6 120 16.26 
2 Cycle 1 - Cycle 2 - Cycle 3 56 7.59 
3 Cycle 1 - Cycle 2 - Cycle 3 – Emergency 37 5.01 
4 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 - Cycle 5 - Cycle 6 - Emergency 25 3.39 
5 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 14 1.90 
6 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 - Cycle 5 - Neutropenic - Cycle 6 11 1.49 
7 Cycle 1 - Neutropenic - Cycle 2 - Neutropenic - Cycle 3 - Neutropenic 10 1.36 
8 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 - Neutropenic - Cycle 5 - Cycle 6 10 1.36 
9 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 - Emergency 9 1.22 

10 Cycle 1 - Cycle 2 - Cycle 3 – Emergency - Neutropenic 9 1.22 
11 Cycle 1 - Cycle 2 - Cycle 3 – Neutropenic 8 1.08 
12 Cycle 1 - Cycle 2 - Cycle 3 - Cycle 4 - Cycle 5 8 1.08 
13 Cycle 1 - Cycle 2 -Cycle 3 -Neutropenic -Cycle 4 -Cycle 5 -Cycle 6 -Emergency 8 1.08 
14 Cycle 1 - Cycle 2 - Cycle 3 - Neutropenic - Emergency 8 1.08 
15 Cycle 1 - Cycle 2 - Cycle 3 - Neutropenic - Cycle 4 - Cycle 5 - Cycle 6 7 0.95 
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Table 2 shows that the most common variant is a sequence of Cycle 1 to Cycle 6 
(n=120; 16.26%), followed by the second variant that is a sequence of Cycle 1 to Cy-
cle 3 (n=56; 7.59%). Our clinical experts confirmed that even though a complete se-
quence of Cycle 1 to Cycle 6 is expected, a lot of patients needed a consultation after 
Cycle 3 to decide if the chemotherapy regimen can be continued. Patients might also 
change regimen after Cycle 3 and therefore are not captured in this study. 

Fig. 5 shows a dotted chart of routine chemotherapy cycles of patients treatments 
of up to 7 years. The chart shows groups of patients who had not completed six cycles 
of chemotherapy (the one-third top part of the chart), who completed six cycles of 
chemotherapy (the middle part), and who had more complicated courses of treatment 
(the bottom part). In total, 51% (n=376) patients completed all six cycles, without any 
acute event (n=158; 21%) or having at least one acute event including emergency 
admission or neutropenia (n=218; 30%). The patients who did not complete six cycles 
(n=392; 49%), might had acute events (n=207; 28%) or not completing for other rea-
sons (n=155; 21%). Based on our discussion with clinical experts, some of those rea-
sons are missing appointments, disease complications, and personal reasons.   

 
Fig. 5. Dotted chart showing adverse events during six chemotherapy cycles. The x-axis shows 
duration from the first activity to the last one. The y-axis shows patient id, sorted by durations. 

This dotted chart had been shown to the clinicians and all of them agreed that this 
visualisation helped them understanding the situation more clearly. There are only 
about a third of patients had the normal and ‘happy’ path of six cycles of chemothera-
py, while the others had incomplete or overly complicated paths of treatment. Some 
example of patients were picked and discussed with clinical experts to see specific 
cases where patient conditions preventing them from completing the treatment. Those 
specific cases are not presented in this paper because presenting data of a small num-
ber of patient would breach ethical approvals. 

Further analysis of the result was examining the cycles leading to an emergency 
admission or a neutropenic condition. Table 3 shows that most patients who had 
emergency admission got it after Cycle 3 (n=117; 16%), Cycle 6 (n=90; 12%), or 
Cycle 1 (n=81; 11%); while most patients who had Neutropenic got it after Cycle 3 
(n=142; 19%), Cycle 2 (n=123; 17%), or Cycle 1 (n=94; 13%). Collectively, adverse 
events (Emergency or Neutropenic) have mostly occurred after Cycle 3. Table 2 
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summarised the pattern of the cycles leading to an acute event and might have a one-
to-many relation to trace variants presented in Table 2. For example, Cycle 3 leading 
to a Neutropenic event in Table 3 (n=142; 19%) is related to variants 7, 11, 13, 14, 15 
and other infrequent variants in Table 2. 

Table 3. The Cycles Leading to an Acute Event 
Activity leads to Emergency leads to Neutropenic 

N (%) med; mean  N (%)  med; mean 
Cycle 1 81 (11) 8 d; 18.4 d 94 (13) 19 d; 23.1 d 
Cycle 2 52 (7) 8 d; 43.9 d 123 (17) 19 d; 20.6 d 
Cycle 3 117 (16) 28 d; 27.3 w 142 (19) 18 d; 61.1 d 
Cycle 4 64 (9) 14d; 27.3 w 84 (11) 19 d; 16 d 
Cycle 5 22 (3) 13.5 d; 19.2 w 70 (9) 19 d; 33.5 d 
Cycle 6 - - - - 

It is also important to note that the median and mean duration of acute events after 
a chemotherapy cycle are generally under 21 days, within the expected duration of a 
cycle to the next one. This means that patients experienced one or more acute events 
before the next cycle of chemotherapy, got treated, and continue to the next cycle of 
chemotherapy as planned. On the last row, Emergency and Neutropenic events after 
Cycle 6 are not presented because they are not part of this study. 

4.3 The Enhanced Process Model 

There were 339 out of 738 patients (46%) who had their GPTab accessed by clini-
cians. This percentage is higher than the percentage of all cancer patients who had 
their GPTab accessed by clinicians (46,547 out of 339,127 patients; 37%), which 
showed that clinicians made use of the patient records in the GPTab to support their 
decisions on the next treatment for their patients. Fig. 6 shows the process model 
containing the flow from Cycle 1 to Cycle 6 of chemotherapy. During the course of 
chemotherapy, the GPTab might be accessed by clinicians. The most frequent se-
quence is that GPTab was accessed after Cycle 6 (n=160; 47%), followed by GPTab 
access after Cycle 3 (n=110, 32%) and GPTab access after Cycle 4 (n=31; 9%). 

 
Fig. 6. Process model showing GPTab access during chemotherapy cycles (bupaR). It shows 
that GPTab was mostly accessed after Cycle 3, Cycle 6, or Cycle 4. 
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These results have been confirmed by the clinical experts to reflect reality. The cli-
nicians are most likely need to check on patient records in GPTab after the sixth cycle 
to decide whether to discharge the patient, to follow on the next cycle of chemothera-
py, or to suggest another treatment. Clinicians might need to check on patient records 
in GPTab after Cycle 3, to decide if the next cycles should be delivered as planned or 
not. Another finding was that GPTab click is mostly the last activity in the pathways, 
or at the end of treatment (n=326; 96%). The enhanced process model revealed some 
important insights into how GPTab has been used during the treatment process. 

4.4 Process Analytics 

Process analytics was done to analyse GPTab usage chemotherapy. This was based on 
a discussion with a representative of the PPM development team who mentioned that 
the GPTab had been through some changes during the study period. We followed up 
this discussion by exploring the increasing pattern of GPTab usage over time. Fig. 7 
shows a bar chart of the number of GPTab clicks from July 2014 to December 2018. 

 
Fig. 7. GPTab clicks each day. It shows that the number of clicks generally increased over time, 
with steady fluctuations showing the pattern of weekday- and weekend- usages. 

 

Further exploration of the PPM Splunk records shows that in March 2018, the first 
version of GPTab (GPv1) has been replaced by the second version (GPv2). In Sep-
tember 2017 to February 2018 both versions were accessed by clinicians, and this has 
been confirmed as the transition period. The transition period from GPv1 to GPv2 can 
be captured in the monthly usage from 2017 to 2018, as shown in Fig. 8. This has not 
been seen in Fig. 7, which shows that the transition from the first version to the sec-
ond one has been done smoothly. 

4.5 Statistical and clinical evaluation 

The evaluation was done in both statistical and clinical aspects. Statistical evalua-
tion was done throughout the stages by analysing the occurrence numbers and per-
centages of events in the process. This has been presented in the relevant steps in the 
previous sections of this paper.  
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Fig. 8. Monthly usage of GPTab during 2017-2018. The blue dots are monthly usage of the first 
version (GPv1) and the orange dots are those of the second version (GPv2). 

Clinical evaluation was done through discussion with clinical experts. In the Plan-
ning stage, clinical experts suggested the scope of the study. The GPTab functionality 
was chosen based on the availability of the related data to enhance process model of 
patient treatment. One important insight from the software training team was that for 
some new features introduced in the PPM software, there was a period when training 
was given to the clinicians to introduced the use of the new feature, such as GPTab. 
During the Extraction stage, clinical experts evaluated and suggested details the ex-
traction step. One important suggestion in this stage was the specific type of chemo-
therapy for breast cancer selected in this study, which is EC90 for adjuvant treatment. 
In the Data processing stage, clinicians suggested focusing on the effect of the GPTab 
introduction to the chemotherapy cycles. The findings from the Mining and analysis 
stage have been discussed with clinical experts. Some of their comments had been 
presented in the relevant part in Section 4.1 to Section 4.4. The GPTab supported 
clinicians to decide on the next treatment suitable for their patients, such as to follow 
with the next cycle of chemotherapy, to change the regimen of chemotherapy, or to 
discharge the patient. 

5 Conclusion 
This paper described a process analytics approach by combining patient clinical 

records with user access log to analyse system usage during patient treatment. A case 
study presented in this paper was GPTab usage during chemotherapy treatment. Two 
research questions had been established and answered through a structured experi-
ment following the PM2 stages. The first research question has been answered in the 
Mining and analysis stage, specifically in the process model (see 4.2). Additional 
analysis to support this answer has been presented in a trace variant list (Table 2) and 
a dotted chart (Fig. 5). The second research question has been answered by the en-
hanced process model (Fig. 6) which shows how GPTab has been used to support 
clinician to decide the next treatment for their patients. General comments of the find-
ings throughout the stages are that process mining is potentially useful to improve 
clinical pathway analysis by providing visualisation of process models and additional 
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results such as trace variance diagrams and dotted charts. Those visualisations sup-
ported discussions with the multi-disciplinary team. 

Some limitations and potential improvements in this study are as follow. The first 
is to explore the aggregated events to see how chemotherapy has been given in the 
sequence from a referral, diagnosis, and a set of treatments. Second, the idea of com-
bining user access records in PPM Splunk with the treatment records in the PPM da-
tabase was good to analyse the effect of system functionality to the treatment process. 
Another possibility discussed was to analyse PPM Splunk separately to be compared 
to the discovered process model from the patient records. Since PPM Splunk recorded 
all actions done by clinicians during patient treatment, the treatment process itself 
should be reflected in the records. Third, the extraction and data processing in this 
study relied on the selection of the best set of events of the specific cohort of patients, 
based on the understanding of the data and problem domain. Further improvement 
might be to explore possible ways to select the best set of events based on the data 
attributes, with less dependence on clinical expert judgments. 
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Abstract. Process mining has become its own research discipline over
the last years, providing ways to analyze business processes based on
event logs. In healthcare, the characteristics of organizational and treat-
ment processes, especially regarding heterogeneous data sources, make
it hard to apply process mining techniques. This work presents an ap-
proach to utilize established standards for accessing the audit trails of
healthcare information systems and provides automated mapping to an
event log format suitable for process mining. It also presents a way to
simulate healthcare processes and uses it to validate the approach.
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1 Introduction

We provide a process analytics approach to enable the mining of standardized
audit trails of healthcare information systems by transforming them into eXten-
sible Event Stream (XES) logs via an automated mapping approach. We tested
it by simulating a radiology practice workflow, and analyzed the results with a
process mining tool.

With diverse use cases and different approaches, techniques, and algorithms,
process mining became its own scientific discipline over the last 20 years [1]. With
the goal of understanding and improving the real-world processes, process mining
provides an evidence-based (i.e., data-driven) view on the processes recorded
by information systems. An increasing number of case studies also show the
applicability of process mining in the healthcare domain (cf. the reviews in [4,
18]). Most of those case studies focus their analysis on single hospitals or even
departments due to problems of data integration or data availability [4].
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1.1 Problem Statement

Rebuge and Ferreira [17] conclude in their work that healthcare processes, both
organizational and medical treatment, are highly dynamic, highly complex, in-
creasingly multi-disciplinary and generally ad-hoc. All four characteristics make
it hard to apply process mining techniques. In this work we focus on the aspect
of high complexity, partly caused by the high number of participants, heteroge-
neous information systems, and the resulting lack of interoperability [4, 17].

Rojas et al. [18] found in their review that three implementation strategies for
process mining projects in healthcare exist: (1) The majority of case studies work
with direct implementations, where data is gathered directly from hospital infor-
mation systems (HIS) for building an event log. Data extraction and building the
correct event log poses major challenges here. (2) The second, semi-automated,
strategy involves the integration and extraction of data from different sources
via custom-made developments. The disadvantage here is the ad-hoc, propri-
etary nature of these developments, as they only work for specific data sources
and environments. Both strategies, direct implementation and semi-automated,
share the need to understand process mining tools and algorithms for conducting
process analytics. (3) The third strategy is the implementation of an integrated
suite. Specific data sources are connected and integrated, and specific process
mining algorithms are executed in order to perform defined analytics tasks. Once
implemented, these solutions are easily applicable, but like the semi-automated
strategy, fail to integrate other data sources and environments.

We conclude, that a major problem with starting a process mining project
in healthcare is that one has to choose between either complex manual data
extraction and integration, or locking oneself in on specific data sources and
environments (i.e., vendor lock-in).

1.2 Related Work

To overcome the problems of process mining on heterogenous data sources in
healthcare, some studies tried to analyze standardized audit trails [3, 7, 16]. We
will build on this work, using their concepts of audit events, mapping strategies,
and multi-perspective process mining.

Cruz-Correia et al. [3] were the first to explicitly make the connection between
standardized auditing in healthcare and process mining. They specifically looked
at the Integrating the Healthcare Enterprise (IHE) integration profile Audit
Trail and Node Authentication (ATNA). Being one of the core profiles dealing
with IT infrastructure in healthcare, ATNA defines how to build up a secure
domain that provides patient information confidentiality, data integrity, and user
accountability. They analyzed ATNA audit trails from four different hospitals in
Portugal and identified several data quality issues.

Later, Helm and Paster [7] investigated the suitability of event logs recorded
by the means of IHE ATNA for process mining. They adopted a direct map-
ping approach, transforming IHE audit messages into XES event logs. They en-
countered issues regarding the determination of trace identifiers and semantics
preserving mapping.



Process Mining on FHIR 3

De Murillas et al. [16] took on the previous approach [7] and presented a
method to overcome the problems of trace identification and incorrect mappings.
By integrating the audit trail data into a generic meta model (OpenSLEX), they
provided the means to query and analyze the data from different perspectives.

While these approaches try to solve the issue of heterogeneous data sources,
they either lock the user in on a predefined mapping [7] or provide a non-
standardized interface to the process data [16] – two shortcomings that can
be avoided with our approach.

1.3 Proposed Solution

Supporting definition, instantiation, and execution of workflows is still a topic of
vivid discussions in the respective standards development working groups. For
the analysis part, first steps have been taken. Standardized Operational Log of
Events (SOLE) is a recently developed IHE integration profile. It is a supplement
for the radiology technical framework and currently in revision 1.2, published for
trial implementation in mid 2018 [13]. SOLE describes the capture and retrieval
of operational events in the radiology domain and utilizes transactions from
the ATNA profile, including the new RESTful ATNA [12], based on the Health
Level Seven (HL7) standard Fast Healthcare Interoperability Resources (FHIR).
The profile authors’ incentive for writing the SOLE integration profile was the
strong desire of healthcare providers “to increase throughput and efficiency, both
to improve the quality and timeliness of care and to control costs” [13]. They
conclude, that workflow events must be captured in order to be able to apply
business intelligence tools [13].

We propose an open standards-based process analytics approach for health-
care information systems to overcome the problems mentioned above. It enables
the development of tools that combine the easy applicability of an integrated
suite with the ability to integrate different data sources. This will make existing
process mining tools the business intelligence tools the community wants.

To this end, this paper aims to show how existing concepts can be utilized
and what changes in the standard are necessary to enable process mining based
on HL7 FHIR. This paper also contributes to the field by presenting a novel
approach to utilize a process simulation tool in a healthcare environment.

2 Background

This section provides a brief overview on the two major standards involved in
building the open process analytics approach, HL7 FHIR and XES.

2.1 HL7 FHIR

FHIR4 is the latest addition to the family of healthcare interoperability stan-
dards maintained and published by HL7 International [8]. FHIR provides a

4 HL7, FHIR and the FHIR logo are the registered trademarks of Health Level Seven
International and their use does not constitute endorsement by HL7.
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comprehensive information model which is geared towards supporting seman-
tic interoperability of clinical data. The fundamental building blocks for this
information model are resources. A resource as described by Mandel et al. [15]
is a coherent expression of clinical data and is based on a set of well-defined
fields and data types. Every resource comprises the standard defined data con-
tent, a human-readable representation of respective content and has an identity.
The FHIR specification defines resources for common clinical concepts, e.g., Pa-
tient, Medication, Observation, Condition. Besides that, FHIR leverages modern
web technologies together with a strong foundation of web standards and offers
support for RESTful architectures. Following the RESTful paradigm, FHIR al-
lows to alter the state of a particular resource using a set of predefined actions
for Create/Read/Update/Delete (CRUD). If required by a given use-case, it is
also possible to apply a more Remote Procedure Call (RPC)-like interaction
paradigm. This is achieved by defining operations that work on input and pro-
duce an output [9]. The operations can be executed on the server level, on the
resource type level, or on the instance level of a specific resource and are typ-
ically invoked by a HTTP POST or can alternatively be invoked by a HTTP
GET if no changes are caused on the server.

According to HL7 International [8], a central challenge for the FHIR specifi-
cation is handling the wide variety and variability in diverse healthcare processes.
This challenge is solved by offering a simple framework for extending the existing
resources and describe use cases based on profiles. Profiling a resource allows to
constrain and extend a resource specification for a given context [15]. By pro-
viding reference implementations for the specification, HL7 intends to reduce
the entry barrier for developing FHIR conformant solutions. The development
of the specification and the standard follows a developer first approach, which is
reflected by the specification as a mixed standard comprising normative portions
and parts still undergoing trial use [8].

2.2 XES

Log data is created from a variety of different systems with their own propri-
etary data models, formats, and semantics. Process mining techniques require
their input data in a specific format. Some tools directly integrate data from
(1) Enterprise Resource Planning (ERP) systems, (2) databases, or (3) Comma
Separated Value (CSV) files, all three in a proprietary way. However, developed
in 2010, XES became the IEEE standard for “achieving interoperability in event
logs and event streams” [11]. Today, XES is supported by the majority of process
mining tool vendors.

XES defines three basic objects: log, trace and event. Log (the process) con-
tains a collection of traces (execution instances) and a trace contains a collec-
tion of events [20]. Each object can contain an arbitrary set of strongly typed
attributes in the form of key-value pairs. Every attribute value has a data type,
like string, boolean, or date. To add semantics to these data types, XES defines
the concept of extensions. An extension defines a set of attributes, their types,
and keys with a specific semantic meaning.
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3 Materials and Methods

This section describes which standards and tools were used in building the an-
alytics suite and how we utilized and extended them to enable process mining
based on HL7 FHIR.

Fig. 1. The three steps of the interface test setting including the respective consumed
and produced data. The numbers correspond to sections or figures in this paper.

Figure 1 depicts the three steps (1) simulate, (2) store&provide, and (3)
analyze, that aim to show how the open standardized process analytics approach
works. The circles represent data consumed and produced in those three steps.

To test the approach, a simple process was used. Figure 2 shows a simplified
process model for an examination in a radiology practice using Business Process
Model and Notation (BPMN). It shows the main steps from the appointment
scheduling to the distribution of the diagnostic report. It is based on the work
of Erickson et al. on business analytics in radiology [5] and on the process model
used for evaluation in [7]. This is of course just an example and the approach is
applicable to other healthcare domains as well.

Fig. 2. BPMN process model of the radiology practice workflow based on [5, 7].
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In the first step, a patient that, e.g., received a referral for a radiological
examination, calls the practice to schedule an appointment. In some cases of our
simulation, this step can be skipped and the patient arrives without a sched-
uled appointment. On the day of the examination, the patient arrives at the
reception and is placed on the waiting list (patient admission). When called, the
patient enters the procedure room and the radiological examination takes place.
Afterwards, the radiologist makes a diagnosis and dictates the report. The re-
port writing is done by trained specialists. The resulting report is attested by
the radiologist. Finally, the report is sent to a requesting physician or handed
out directly to the patient (report transmission).

3.1 Simulate

In order to be able to automatically generate process data, some sort of process
engine or simulator is required. Burattin [2] developed a tool specifically designed
to simulate processes and generate event logs for process mining, the Processes
and Logs Generator (PLG2). The tool allows to generate and simulate random
BPMN models, and to add randomized noise (e.g., double activity execution,
skipping activities, etc.). The tool also allows to load an existing model, in our
case the model from figure 2, and simulate it.

To use PLG2 for the simulation, we needed to make REST calls to our HL7
FHIR server. PLG2 allows to specify the execution time of different activities
using Python scripts [2]. We adapted those scripts to execute REST calls using
Client for URLs (cURL). By default PLG2 provides a single parameter, that is,
the case identifier (caseId), to these python functions. We used this parameter to
make the process instances distinguishable by deriving resource identifiers from
it (i.e., patientId and encounterId).

Each activity in the process from figure 2 was extended with REST calls,
creating, reading, or updating resources and executing operations on the FHIR
server (according to the mapping described in the next section). The process
was then simulated 10 times without randomized noise, each run resulting in
one process instance recorded on the server.

3.2 Store & Provide

We set up a FHIR server including the required extensions and operations to
automatically record audit trails, and to transform and provide this information
in the XES format for process mining.

FHIR Server. We implemented our FHIR Server based on the open-source
project “HAPI-FHIR Starter”5. This project provides a fully working FHIR
server, including a database connection, based on the HAPI FHIR JPA project.
Adjustable configuration files and the interceptor framework [19] create high

5 https://github.com/hapifhir/hapi-fhir-jpaserver-starter
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flexibility for custom changes and for adding extensions to the existing server
implementation.

We utilized the Consent Interceptor, which amongst other functionalities has
the ability to hook into the point of the server code, where a CRUD operation
(e.g., creating an appointment or reading a patient record) has been finished.
One of the Consent Interceptor’s roles is to write audit trail records, creating an
AuditEvent resource every time an operation has been finished successfully or
with a failure.

In addition to the interceptor implementation, we provided the FHIR opera-
tion $fhirToCDA as part of our custom extensions to the server implementation.
The operation can be executed on a specific instance of the DiagnosticReport re-
source and it returns an empty document to the client. An AuditEvent recording
the execution of this operation in the context of a radiology workflow encounter
will, for mapping purposes, be interpreted as a report transmission activity.

To query for an event log in the XES format, we extended our FHIR server
by the $xes operation, which is defined to work on the AuditEvent resource
type and is there to identify and transform all AuditEvents of the radiological
workflow “rad-wf” into the XES format:

GET [fhirserver]/AuditEvent/$xes?plandefinition=PlanDefinition/rad-wf

Extending AuditEvent. We filled the AuditEvent resource with request de-
tails that are automatically provided for any standard CRUD operation. In or-
der to be able to query for relevant AuditEvent resources, we needed to identify
grouping elements. We decided to extend the AuditEvent resource by refer-
ences to the Encounter and PlanDefinition resources (cf. section 5.1). Geared
to the other resources containing the Encounter resource reference as part of
their standard FHIR resource definition, we named the extended AuditEvent el-
ement “encounter”. An additional extension “basedon” is used to reference the
PlanDefinition resource “rad-wf”, that defines the radiological workflow. This
element can later be used to filter AuditEvent resources related to the execu-
tions of the radiological workflow process, while Encounter references are used
to distinguish the single process instances (i.e., the traces).

Mapping FHIR AuditEvent to XES. For the test setting, we base our
mapping on the assumption that Encounter identifier can be utilized as trace
identifiers and that recorded events refer to a common process description, i.e.,
a medical guideline or pathway defined as a PlanDefinition. Of course, this is
just one perspective, and different perspectives can be taken on the data (cf.
section 5.3).

Let R be the set of all resources on the FHIR server. Let A ⊆ R be the set of
all AuditEvent resources, and E ⊆ R be the set of all Encounter resources, and
P ⊆ R be the set of all PlanDefinition resources. All three subsets are disjoint,
i.e., A∩P = ∅, A∩E = ∅, and E∩P = ∅. Resources can refer to other resources
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Table 1. Mapping table of operations on specific FHIR resources to activities of the
radiology practice workflow, ordered by occurence in the simulated model in figure 2.

Operation FHIR Resource 7→ Activity

create Appointment Schedule Appointment

update Appointment Patient Admission

create Procedure Radiological Examination

create Media Diagnosis

create DiagnosticReport Report Writing

update DiagnosticReport Report Attestation

execute *$fhirToCDA Report Transmission

via the predicate refersTo(r, r′) :⇔ (r, r′) ∈ R, where r’ is referenced by r, i.e., r
contains the identifier of r’.

Let pw ∈ P be the PlanDefinition resource “rad-wf” defining the radiology
workflow. Then, Aw = {a ∈ R|∀a∈A refersTo(a, pw)} is the set of all AuditEvent
resources recorded during the execution of radiology workflows.

For our mapping, let Aw be a set of disjoint sets Awi, where every Awi

represents a set of AuditEvents recorded during a specific radiology workflow
encounter ∃e ∈ E of one patient. Then, every Awi will be mapped to a trace σ
in an XES event log L.

For testing the approach, we only map to mandatory fields in L, e.g., con-
cept:name of the event (providing the activity name) and time:timestamp of the
event (for ordering). Table 1 describes which recorded combination of opera-
tion and resource is mapped to which activity name. The timestamp is mapped
directly from the recording time AuditEvent.recorded.

3.3 Analyze

Querying the FHIR server for AuditEvent resources using the $xes operation
returns an XES event log. Since the operation already utilizes XES standard
extensions (i.e., Concept and Time), the semantics of the fields are clear for
process mining tools. The next step is to analyze if the simulated process matches
the one stored and provided by the HL7 FHIR server. Thus, we want to compare
the input model with a model generated based on the retrieved XES event log.
We use the process mining tool ProM 6.9 [20] with the Visual Inductive Miner
plugin [14] to generate a model.

4 Results

This section shows three exemplary results of the implementation: (1) a FHIR
resource generated by the simulator, (2) the corresponding event in the XES
event log, and (3) the process model created based on the event log. All results
and examples can also be found in our GitHub open-source project6.

6 https://github.com/fhooeaist/ProcessMiningOnFHIR/
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4.1 FHIR Resources

As described in the mapping in table 1, the Report Writing activity is associ-
ated with creating a DiagnosticReport resource. The simulator thus executes the
following cURL statement:

POST [fhirserver]/DiagnosticReport

{ "resourceType": "DiagnosticReport",

"subject": { "reference": "Patient/[patientId]" },

"encounter": { "reference": "Encounter/[encounterId]" },

"status": "preliminary",

"code": {

"coding": [ {

"system": "http://loinc.org",

"code": "LP31534-8",

"display": "Study report"

} ]

}

}

This triggers the creation of an AuditEvent resource. This one is shown in ab-
breviated form, focusing on the elements relevant for the mapping:

{ "resourceType": "AuditEvent",

"extension": [

{ "url": "https://fhirserver.com/extensions/auditevent-encounter",

"valueReference": { "reference": "Encounter/[encounterId]" }},

{ "url": "https://fhirserver.com/extensions/auditevent-basedon",

"valueReference": { "reference": "PlanDefinition/rad-wf" }}

],

"action": "C",

"recorded": "2020-08-14T08:42:51.523+02:00",

"entity": [ {

"what": { "type": "DiagnosticReport" },

"detail": [ {

"type": "RequestedURL",

"valueString": "[fhirserver]/DiagnosticReport/"

} ]

} ]

}

The created AuditEvent resource refers to the respective Encounter resource and
to the PlanDefinition resource “rad-wf” that defines the radiology workflow. The
action field indicates the type of operation (C=Create) and the entity element
contains details about the manipulated resource, i.e., the DiagnosticReport.

4.2 XES Log

The query for AuditEvent resources with the $xes operation returns the following
XES event log (only one trace with one event is shown, extensions left out):
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<?xml version="1.0" encoding="UTF-8" ?>

<log xmlns="http://www.xes-standard.org/">

<string key="concept:name" value="PlanDefinition/rad-wf"/>

<trace>

<string key="concept:name" value="Encounter/enccase55"/>

<event>

<string key="concept:name" value="Report Writing"/>

<date key="time:timestamp" value="2020-08-14T08:42:51.523+02:00"/>

</event>

</trace>

</log>

This detail of the resulting XES log shows the concept:name attributes on log
and trace level, derived from the referenced PlanDefinition and Encounter re-
sources respectively. The event (report writing) was generated for the AuditEvent
resource presented in the previous section 4.1, that recorded the creation of a
DiagnosticReport.

4.3 Process Model

Figure 3 shows the resulting model after importing the XES event log in ProM
and analyzing it with the Inductive Visual Miner [14]. It is split up in two parts
and highlights the similarity to the input model in figure 2. All traces were
identified based on their Encounter reference and all AuditEvents were correctly
mapped according to table 1. All 10 recorded executions are visible, with 5
skipping the first (schedule appointment) activity.

Fig. 3. Process model generated with the Inductive Visual Miner.

5 Discussion

The presented work is a proof of concept, making the case for a standards-based
process analytics approach and making sure that the standard in development,
HL7 FHIR, is aware of the capabilities and requirements of process mining. We
were able to show how only minor extensions, namely the addition of Encounter
and PlanDefinition references, and a simple mapping, enabled the analysis of the
radiology practice workflow with process mining tools.
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5.1 Impact on Standardization

In the FHIR Workflow project, the authors made a case for checking the usabil-
ity of FHIR resources for process mining. Together, the working group members
proposed the addition of a trace identifier to the AuditEvent and Provenance
resources7: “We want to be able to search on all events (creates, updates, deletes,
etc.) that happened during a given encounter, that happened based on a par-
ticular protocol or as a result of a particular order.”. Based on the discussions
in that group, we decided to use PlanDefinition and Encounter for the group-
ing and mapping approach. A proposal to extend AuditEvent to support this is
currently under review for inclusion in the next FHIR release R5.

5.2 AuditEvent vs. Provenance

In this work we analyzed AuditEvent resources, building on existing approaches
that aimed to analyze audit data [3, 7, 16]. However, HL7 FHIR also makes use of
the concept of provenance, recording “information about entities, activities, and
people involved in producing a piece of data or thing, which can be used to form
assessments about its quality, reliability or trustworthiness” [6]. A Provenance
resource is created by the client (i.e., the person or system conducting the work)
as opposed to the AuditEvent resource, which is created automatically by a
server. The client should explain for what purpose a resource was edited (created,
updated, deleted). In addition, a client can add information about the process
(or policy) behind the edit, and provide reasoning why something was done
(i.e., which path of a process model was taken). However, Provenance is (1) not
widely used (yet), and (2) not documenting non-changing access to a resource
(i.e., read). To summarize, Provenance can provide more detailed information
on a process, but relies on the clients to record it and might thus be not present
at all. Further research on the utilization of the Provenance resource for process
mining is needed.

5.3 Considering Different Perspectives

In our example, Aw, the set of all AuditEvent resources recorded during the
execution of a radiology workflow (as defined by the referenced PlanDefinition
“rad-wf”), was split to traces based on the referenced Encounter resources. How-
ever, in fact, Aw represents a multiset of traces, that can be split based on the
perspective you take on the data. A more generic approach should thus indicate
the grouping behaviour in the query, based on the concepts developed in [12].

Another viable perspective would be, for example, to look at the active par-
ticipants of the workflow. AuditEvent.agent is described as “an actor taking an
active role in the event or activity that is logged” [10]. Mapping name and role
to the corresponding fields of the XES Organizational extension allows for ad-
ditional analysis, e.g., social networks or handover of work for medical or care
personnel.

7 https://jira.hl7.org/projects/FHIR/issues/FHIR-28100
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Abstract. Clinical pathway (CP), a standardized treatment process
based on a clinical guideline, is widely used to reduce costs while main-
taining or improving patient care quality. However, there is a gap between
the actual clinical process and the guideline, that causes CP application
to be disturbed. A study on developing a data-driven automated clinical
pathway to obtain insight into real clinical processes has been conducted.
Still, patient characteristics and conditions, which could cause a varia-
tion, have not been fully considered. In this study, we aimed to develop
a framework to derive a sophisticated clinical pathway from electronic
health records (EHRs) data by exploring process variations according to
the patient characteristics and conditions. To validate the applicability
of the proposed framework, We conducted a case study using the Total
Laparoscopic Hysterectomy (TLH) CP data, which was retrieved from
an EHR system of a tertiary general hospital in South Korea between
January 2012 and April 2016. We found that diabetic TLH patients show
different medical performances with other TLH patients. We developed
a tailored CP that adds eleven orders over the standard TLH CP, and
experts evaluated it as meaningful.

Keywords: Clinical pathways · electronic health records(EHR) · sta-
tistical analysis · evidence-based approach · clinical features · Business
process analysis

1 Introduction

A clinical pathway (CP) is a standardized care process in a specific setting
such as a particular surgery [7, 4]. The use of CPs is gaining interest to help
decrease hospital costs and improve the quality of medical services by reducing
undesired practice variability [13, 12]. Additionally, CPs shorten the length of
hospital stays, lower costs, reduce complications and lower mortality [13, 8]. As
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such, more than 80% of hospitals in the United States adopted CPs in the late
1990s [14], and currently, the implementation of CPs is widely contemplated by
hospitals all over the world [21].

The traditional approach for developing a CP relied solely on the knowledge
of clinical experts and clinical guidelines. Although the approach was a valuable
method derived from solid theoretical backgrounds, it was limited by the time
and effort required and the lack of generalization [19, 17]. Due to the highly
dynamic, highly complex and ad hoc features of the medical treatment process,
there is also a gap between the actual clinical process and the CP. As such, an
automated approach from data is needed, and researchers have tried to resolve
these challenges using process mining and data mining.

Mans et al. [10] applied heuristic miner, and a further work [11] used fuzzy
miner and trace clustering to obtain insights from CPs. Huang et al. [4] proposed
a new approach for mining CP patterns with time information from chronicle
mining. Rebuge et al. [16] suggested a framework to compare the discovered
CP and its variants using sequence clustering. Xu et al. [18] developed a more
straightforward CP using the Latent Dirichlet Allocation technique. Addition-
ally, researchers have employed further data mining techniques to develop CPs,
such as frequent itemset mining [15], sequential pattern mining [15], and a rule
induction algorithm [5].

These studies have contributed to developing the automated and accurate
CPs based on data, deriving a standardized CP for the majority of patients. De-
spite these efforts using the data-driven approaches, it is still challenging to apply
and complete CP with little effort in practice. In general, most hospitals only
implement a single universal CP for a specific surgery or procedure. But, given
the various clinical features of diabetes, cardiovascular, age, and medical history,
a single CP cannot cover all different patients even with the same surgery; thus,
a CP needs to be subdivided according to the clinical features. Therefore, with
the aim of the increase of practical use, it is required to implement an approach
for CP segregation with clinical features.

This study aims to identify the distinctive clinical characteristics that af-
fect to distinguish a new clinical pathway. To this end, this paper suggests a
framework consisting of four phases: data preparation, feature engineering, sta-
tistical analysis, and CP development. We first define the outcome measures
and explanatory variables from the data. The matching rate, which represents
a similarity between clinical trace and reference CP, is adopted as one of the
medical performances for process-oriented assessment. Then, statistical testing
is conducted to identify the key features highly related to clinical performance
measures. Based on decisive factors from the statistical results, we distinguish
a new CP (i.e., CP development) after post-hoc analysis with trace alignment.
To validate the proposed framework, we performed a case study with real data
from a tertiary hospital in South Korea.

The remainder of this paper is organized as follows. Section 2 explains the
proposed framework. Section 3 shows a case study, and Section 4 discusses the
results. Finally, Section 5 concludes the paper with future work.
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2 Proposed Framework

In this section, we propose a framework for CP segmentation by patient char-
acteristics. As shown in Fig. 1, the framework consists of four phases: data
preparation, feature engineering, statistical analysis, and post hoc analysis &
CP development. Data preparation, the first phase, aims to identify the data
that can be utilized for data analysis by wrangling the collected data. Then,
dependent (i.e., outcomes) and explanatory variables (i.e., patient characteris-
tics) are defined in the feature engineering step. The statistical analysis phase
conducts experiment to identify the relationship between outcome and indepen-
dent variables. Lastly, in the post hoc analysis and CP development phase, we
distinguish the new CP based on the result of comparing the clinical orders by
statistical analysis and trace alignment.

Fig. 1. The proposed framework in this paper.

2.1 Step 1: Data preparation

The first phase of the framework aims to prepare data with a suitable format for
statistical analysis by collecting and pre-processing records. Clinical data gener-
ally are complex and heterogeneous [3]. There are four kinds of quality issues:
missing data, incorrect data, imprecise data, and irrelevant data [1]. Missing
data indicates that data is missing from logs, while incorrect data signifies that
information recorded is not correct. Imprecise data represents that the level of
data is too coarse, whereas irrelevant data means that information is not related
at all with the log. These four types of quality issues are explicitly connected
with the healthcare environment, and it needs to be processed thoroughly. To
resolve these issues, users can choose proper data repair and noise removal meth-
ods based on the data quality. In our case, the most of issues was relevant with
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missing data, and we tried to remove all problematic data. Details will be given
in the Result section.

2.2 Step 2: Feature engineering

One of the main parts in our framework is to identify the patient characteristics
that are highly relevant to the outcomes. To this end, we perform feature engi-
neering to build a research model before the data analysis. As such, the second
phase aims to derive dependent and explanatory variables implied for statistical
modelling. In more detail, dependent variables represent the outcomes, such as
the length of stays or matching rate, i.e., an indicator that signifies the differ-
ence between the clinical pathway and relevant clinical log [20], while indepen-
dent variables signify the patient characteristics. They are derived by selecting
or refining records from the prepared data.

Dependent variables (Outcome measures) Dependent variables represent
the materials to evaluate the outcomes, such as length of stays, hospital costs,
the amount of antibiotics used, and matching rates with respect to efficiency and
complication rates, re-hospitalization rates, and mortality with respect to quality
of the clinical services. Among these variables, in this study, we only employed
the length of stays and matching rates, i.e., the efficiency-focused, because of
the insufficiency of data related to the quality perspective. More in detail, we
were not able to collect the patients’ records who re-visited the hospital with
the same diagnosis within the 30 days (i.e., re-hospitalization) or were turned
out to be dead (i.e., mortality).

The length of stays is one of the critical indicators in most hospitals because
it lowers the risk of infection and medical costs for patients. In this study, we
derived the length of stays by calculating the difference between the admission
date and discharge date.

The matching rates signify how patient records collected from the logs co-
incide with the orders in the CPs. Thus, the rates can be used to evaluate the
practical application of the CP in the quantitative approach. The matching rate
is formalized as follows [20].

CP order matching rate =
1

2
(1 − Mcp

Ncp
) +

1

2
(1 − Rlog

Nlog
) (1)

MCP is the number of orders included in the CP but not shown in the log, NCP

is the number of orders included in the CP, Rlog is the number of orders included
in the log but not shown in the CP and Nlog is the number of orders included
in the log.

Explanatory variables (Patient characteristics) As introduced earlier, ex-
planatory variables represent the materials that classify patients with their char-
acteristics. Thus, regarding these characteristics, patients can be divided into
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groups. For example, patients are divided into age groups, such as infants, chil-
dren, young adults, middle-aged adults, and older adults. Additionally, they may
be classified by whether they have a specific history or not.

EHR system contains numerous patient characteristics, including age, sex,
family history, past history, and they can be categorized into three types: back-
ground information, clinical events, and non-clinical events. The background
patient information signifies historical records of patients before hospitalization.
This group includes age, sex, allergy, operation history, medication history, fam-
ily disease history, and chronic diseases (diabetes, hypertension, hyperlipidaemia,
and cardiovascular and cerebrovascular diseases). The second group is the data
derived from the clinical events during hospitalization, such as transfer of wards,
transfer of departments, diagnosis from another department (not from obstetrics
and gynaecology), and operation from another department. The last category
is related to the administrative information during hospitalization, including
severity, admission type, Diagnosis Related Group (DRG).

2.3 Step 3: Statistical analysis

This step performs a statistical analysis to identify the distinctive patient char-
acteristics considered for CP development. To this end, hypothesis testing is
performed based on dependent and independent variables derived in Step 2. Re-
garding hypothesis testing, different types of methods are utilized considering the
number of groups and shape of distributions. In this study, we applied two types
of statistical analysis methods: Mann-Whitney U test and Jonckheere-Terpstra
test.

Mann-Whitney U test The Mann-Whitney U test identifies whether two
populations are equal or not [9]. As such, the test was applied when the patients
were divided into two groups by a patient characteristic, such as sex and severity.
Its null(H0) and alternative(H1) hypotheses are as follows.; H0: Two populations
are equal, H1: Two populations are not equal.

Jonckheere-Terpstra test As a substitute for the Mann-Whitney U test, the
Jonckheere-Terpstra test is applied when the number of groups is more than two
(i.e., three or more) and they tend to increase or decrease [6]. For example, the
changes of outcome variables can be identified by the increase in the number of
operations. Letting di be the median for the population i, the null and alternative
hypotheses are defined as follows; H0 : d1 = d2 = d3 = · · · = dk, H1 : d1 ≤ d2 ≤
d3 ≤ · · · ≤ dk (where, k is the number of groups).

2.4 Step 4: Post hoc analysis & CP development

The last step compares the selected patients’ clinical orders based on their char-
acteristics and derives a new CP. Here, the critical patient characteristics are
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employed from the statistically significant factors in Step 3. In this phase, pa-
tients are grouped by a specific feature, and the application rates of clinical
orders are measured for each group. Then, the difference in the application rates
of the orders between groups is identified. For example, if the order applies only
to 90% of the severely ill group and 10% of non-severe patients, the order should
be included in the CP of the severely ill group. Then, if a group of features
differentiates multiple clinical orders, some traces from each group are sampled
to visualize the differences and discuss with clinical experts. CP segmentation is
performed when the clinical expert concludes that the functional group needs a
new CP.

3 Case study

3.1 Introduction

A general tertiary hospital in South Korea has developed and applied numer-
ous electronic CPs based on clinical experience to provide appropriate medical
services to patients. In this case study, we primarily analyzed the Total Laparo-
scopic Hysterectomy (TLH) CP, which has been in use since August 2009. From
the hospital’s EHR system, log data of patients determined as candidates to be
applied to the TLH CP were extracted from January 2012 to April 2016, result-
ing in data collected from 1100 inpatients. EHR data of patients’ demographics,
hospitalization, applied CP, surgery, diagnosis, transfers, referrals, physician or-
ders including medications and labs, and CP history was extracted.

3.2 Data Preparation

Based on the collected data from 1100 inpatients, we performed data preprocess-
ing. Among the four types of data quality issues, e.g., missing data, incorrect
data, imprecise data, and irrelevant data, our data included the first type as we
lacked the medical history of patients, such as operations and medication history.
Additionally, the second-hand data collected from surveys, such as drinking and
smoking, had many blank spaces. As such, those characteristics were removed
from the data to be analysed. Furthermore, part of the clinical orders had incor-
rect data, such as an unexpected hold (3.4%) and immediate removal by systems
(2.5%). These were also excluded, and finally, the data was prepared.

3.3 Feature engineering

Dependent variables (Outcomes) As introduced earlier, we applied the
length of stays and matching rates as dependent variables (i.e., outcomes). Re-
garding the length of stays, the average value was 4.57 days (median: 4 days and
standard deviation (SD): 1.8 days). Regarding the matching rate, the average
was 0.716 (median: 0.724 and SD: 0.053).
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Explanatory variables (Patient characteristics) After preparing the data,
we selected 11 explanatory variables based on a thorough discussion with clinical
experts: diabetes, hypertension, hyperlipidaemia, cardiovascular, cerebrovascu-
lar, severity, operations, transfers of departments, transfers of wards, diagnosis
from other departments (not from obstetrics and gynaecology), and referrals to
other departments.

Only a small number of patients had chronic diseases, including diabetes, hy-
pertension, hyperlipidaemia, cardiovascular, and cerebrovascular at 3.5%, 4.7%,
1.5%, 0.1%, and 0.6%, respectively. The number of patients with severity, how-
ever, was relatively high at 33.1%. Regarding the number of operations, most
patients received only one operation while 0.9% of patients received two oper-
ations. Regarding transfers of departments, only four patients (0.4%) changed
departments. Lastly, regarding the other characteristics (e.g., transfers of wards,
diagnosis from other departments, and referrals to other departments), for each
feature, more than 50% of the patients were not associated with the feature at
all, but the remaining patients had more than one frequency.

3.4 Statistical analysis

Among the 11 independent variables (i.e., patient characteristics), only six, e.g.,
diabetes, hypertension, severity, transfers of wards, diagnosis from other depart-
ments (not from obstetrics and gynaecology), and referrals to other departments,
were considered for statistical testing because the sample size for testing should
be sufficient (i.e., more than 30) [9], and the sample sizes for the other features
are not sufficient.

We applied two different statistical testing methods: the Mann-Whitney U
test and Jonckheere test. The Mann-Whitney U test was applied to diabetes,
hypertension, and severity while the Jonckheere test was employed for the re-
maining variables. Table 1 presents the statistical testing results of the length of
stays and matching rates on patient characteristics.

Table 1. Statistical testing results on patient characteristics.

Patient characteristics
p-value

Test type
LOS Matching rates

Diabetes < 0.01 < 0.01 Mann-Whitney U test

Hypertension 0.014 0.045 Mann-Whitney U test

Severity < 0.01 < 0.01 Mann-Whitney U test

Transfers of wards < 0.01 0.035 Jonckheere test

Diagnosis from the other departments
(not from obstetrics and gynaecology)

< 0.01 0.149 Jonckheere test

Referrals to other departments < 0.01 < 0.01 Jonckheere test

As a result of the statistical tests, diabetes, severity, transfers of wards, di-
agnosis from other departments and referrals to other departments significantly
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affected the length of stays while the matching rates were significantly affected
by diabetes, severity, and referrals to other departments. Therefore, we con-
cluded that only three features, e.g., severity, diabetes, and referrals to other
departments, are key characteristics for CP segmentation.

Based on these results, we had a thorough discussion with clinical experts.
First, regarding severity, we determined that the result was caused by incorrect
application of the CP in cancer patients, not the CP target patients. In the hos-
pital, clinicians sometimes applied the CP to cancer patients because there was
no significant difference in clinical operation processes between the two. The can-
cer patients, however, required a longer stay and different routines from the CP
patients. Thus, we determined that it was misleading that there was an impact
on clinical outcomes. Additionally, regarding the referrals to other departments,
the domain experts concluded that the feature needs to be managed by monitor-
ing rather than CP development. For these reasons, we performed further post
hoc analysis and CP development based on diabetes.

3.5 Post hoc analysis & CP development

Considering diabetes, we analyzed the differences in clinical orders between dia-
betic and non-diabetic patients. The total number of diabetic and non-diabetic
patients was 38 and 1062, respectively. We performed trace alignment to visual-
ize how the order records of each group differ. For simplicity, in each group, 20
patients, who stay in the hospital for four days, are sampled, and the result of
trace alignment is in Fig.2.

Additionally, we employed the CP development methodology [2], which de-
rives an optimal set of clinical orders that maximize the matching rates. Based
on the exploited method, we received clinical orders for diabetic and non-diabetic
patients. After, the developed CP for diabetes was compared with that for
non-diabetes. We identified that 11 clinical orders, e.g., Pot chloride, Humalog,
Palonosetron, Ephedrine, Electrolyte panel, Glucose, DM diet (for diabetes),
BST, Infusion pump, Interceed, and Simple hysterectomy, were applied for most
of the diabetic application rates. In contrast, two clinical orders (i.e., Granisetron
and Other dermatological) were utilized only for non-diabetic patients.

Table 2 provides the clinical order application rates of diabetic and non-
diabetic patients. Overall, we were able to identify a clear difference in each
code’s application rates by the group. Therefore, we concluded that the new CP
for diabetes should be distinguished from the general one.

4 Discussion

The results of the analysis showed that diabetes affects medical outcomes, such
as the length of stays and matching rates. To this end, we identified that glucose
control is the reason for the extended hospital stays and the lower matching
rates. Patients with diabetes require a specific amount of time to control their
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Fig. 2. Trace alignment result of diabetic patients and non-diabetic patients.

blood sugar before surgery, which can lead to longer hospital stays. Additionally,
the diabetic patients received surgery later than general patients.

Regarding the lower matching rate for diabetic patients, we found that con-
trolling the patient’s blood sugar affected the results through the post hoc anal-
ysis. We identified that diabetic patients received insulin (e.g., humalog) with
Alberti regimen and dextrose fluid (e.g., pot chloride) containing potassium chlo-
ride to ensure adequate water, electrolyte, and feeding before operations. Ad-
ditionally, diabetic patients received tests to check blood sugar and electrolytes
for glucose control. Moreover, some materials (e.g., infusion pump) were also
utilized for diabetic patients to inject the proper medicines. Therefore, we de-
termined that these orders are required entirely for diabetic patients with both
data and clinical perspectives.

This research has important contributions for both practice and research
standpoints. As far as practical use is concerned, this research helps to develop
the clinical decision support system by resolving the large demands from hospi-
tals to continuously improve and manage CPs. Despite the facts that hospitals
generally cannot develop and enhance CPs due to an insufficient workforce, time,
and costs, however, it is required to implement a tool that gives accurate clinical
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Table 2. Clinical order application rates of diabetic and non-diabetic patients.

Order Information Application rates (%)

Type Name Diabetic Non-diabetic

Medications

Pot Chloride 84.2 2.7
Humalog 84.2 2.0

Palonosetron 57.9 47.1
Ephedrine 50 36.3

Granisetron 42.1 56.2
Other Dermatologicals 44.7 49.3

Lab Test
Electrolyte panel 79.0 9.5

Glucose 79.0 3.2

Diet DM diet (for diabetes) 71.1 1.6

Treatment BST 89.5 2.2

Procedures
Infusion Pump 81.6 7.1

Interceed 57.9 47.6
Simple Hysterectomy 50 39.9

pathways to clinicians, driving to provide high-qualified patient-centric services.
In this standpoint, this paper is of value as it automatically recommends distinc-
tive patient characteristics and develops a new CP with a data-driven approach.

Also, as far as the research standpoint is concerned, this paper is different
from existing works that merely discover a one-off CP and provides a direction
that enables the continuous development of improved CPs with a statistical ap-
proach. Furthermore, the patient characteristics and clinical outcome measures
derived in this research are applicable to multiple clinical research disciplines,
such as real-time monitoring and prescriptive analytics in hospitals.

Despite these contributions, this paper has some challenges. First, there has
been a problem that the number of patients to be analyzed is reduced because
latest data of short-term period data must be used to reflect the latest order
information. Nonetheless, it is significant that we were able to segment the CP
according to the patient condition of diabetes. The framework presented in this
study considerably contributes in terms of managing the clinical pathway and
practical use of the clinical pathway and will continue to demonstrate its useful-
ness through further data acquisition.

Also, this research did not address the inter-relationship between patient
characteristics and thus only aimed at developing new CPs for each patient
feature. However, it is possible to construct CPs that consider multiple patient
characteristics at once (e.g., diabetic-female-TLH CP). Furthermore, we limited
clinical outcome measures to length of stays and matching rates. Future studies
should be expanded to more scalable methodologies, including patient costs and
the use of antibiotics. Lastly, the analysis result presented in this paper was only
based on a single hospital. As there are differences in CPs and data between
hospitals, the study may lack generalizability. Thus, we need to perform more
case studies using data from multiple hospitals. We believe that we can build a
more robust framework for CP segmentation by resolving these issues.
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5 Conclusion

In this paper, we proposed a framework for CP segmentation based on patient
characteristics. In this process, we performed feature engineering to define the
clinical outcome measures related to CPs (i.e., dependent variables) and patient
characteristics (i.e., independent variables). We also conducted statistical testing
using the Mann-Whitney U test and Jonckheere test, and finally a new CP was
distinguished from the general CP.

This paper proposes guidelines to increase the applicability of CPs and sug-
gests how to develop CP variants using patient characteristics and clinical out-
comes. Additionally, the proposed framework has a distinctiveness that enables
the continuous development of improved CPs different from existing works that
merely discover a single CP. Therefore, we believe that our methodology is help-
ful for practical use.

In future studies, we will consider the inter-relationship between patient char-
acteristics for CP segmentation. Additionally, other clinical outcomes, such as
patient costs and the use of antibiotics, may be included. Furthermore, more
case studies should be performed to validate our approach and make various use
cases.
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Abstract. The way patients are treated in Emergency Services changes
during the year, depending on many factors. One key component is
weather temperature. Some seasonal maladies are tightly related to tem-
perature, such as flu in cold weather or sunburn in hot weather. In this
study, data from a hospital in Valencia was used to explore how harsh
weathers affect the emergency service, obtaining information about prob-
able impacts of global warming in healthcare systems. Some illnesses,
such as heat stroke, are more prevalent with higher temperature, but
more interestingly, they also take more time to attend the patients. Rapid
changes in temperature are also analyzed through Process Mining tech-
niques.

Keywords: Process mining · Emergency ·Weather conditions · Health-
care system.

1 Introduction

Emergency departments (EDs) work seven days, 24 hours a week. They are key
departments that provide urgent care to the patients. Since many patients get
further care after the ED’s first response, they are regarded as the gateway to
other hospital departments. The EDs aim to present urgent care to treat people
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recover from their illnesses or at least alleviate the symptoms. Well-performed
and standard processes can accomplish this aim in the ED, where healthcare pro-
fessionals collaborate systematically. The increasing number of patients causes a
crisis of agglomeration in the gateway of hospitals [14]. Although it is well-known
among professionals and literature that most EDs are frequently crowded, many
questions wait for their answers [3]. Among these questions, one might be how
global warming affects emergency services.

Intergovernmental Panel on Climate Change (IPCC) points out that weather
conditions will probably become more hotter or colder frequently and intensely in
the following years [9, 12]. Large parts of the World, especially Asia, Europe and
Australia have encountered the increased recurrence of heatwaves [10]. Besides,
human mortality rates related to extreme hot weather have raised with global
warming [10]. Several reasons may affect the correlation between disease and
global warming, such as local demographics, economic welfare, underlying disease
risk, weather variability in seasons, and available [7]. Another reason is that steep
changes in daily temperature may have an impact on ED processes. For this
consideration, more reliable intellection of disease conditions during temperature
changes is an essential tool for health practitioners and the investigation of ED
processes is gaining more and more attention [5, 8].

Despite progress in the analysis of ED processes, novel strategies are required
for complexity, diversity and non-adaptability reasons [2, 11]. ED processes are
not adjustable and adaptable from another process model because of their nature
and complexity. This complexity makes it hard to provide a clear representation
of the patient flow. Hence, most investigations focus on the observations to dis-
cover the process model, which is time-consuming and unreliable. Process models
are the central part of crowded ED problems. Therefore, they should represent
real and reusable patient flows to find acceptable solutions. Process mining (PM)
automatically creates process models using real data stored in the IT system as
event logs [13]. By applying PM methods, the actual ED processes followed by
patients can be discovered to see the effects of global warming.

The studies that are presented in the next section, show the relation be-
tween higher temperatures and extra attention time, and explore the connection
between patient cases and harsh, sudden temperature changes. This shows the
potentiality of using PM in the study of global warming and healthcare.

2 Case Study

Data were available from 483,229 visits to the Emergency Service at a Hospital
in the city of Valencia. These were records from the years 2015 till 2018. The
records included:

– Patient ID
– Date and time of arrival to the service
– Date and time of the start of the triage and its end.
– Waiting queue assigned to the patient in the triage.
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– The specific service that attended the patient (e.g. surgery, dermatology) and
timestamp, both at the beginning and end of the attention to the patient.

– Patient destination (e.g. home, hospitalization, another medical service).
– Patient’s gender
– Patient’s date of birth
– Patient diagnostic

Daily temperature information was also available, including per day:

– Average temperature,
– Minimum temperature,
– Maximum temperature.

Across the years, subjects usually go to the hospital more than once. Specifi-
cally, 192,884 patients generated the 483,229 visits, with an average of 2.5 visits
to the hospital per patient.

2.1 Assigning Temperature to Cases and Discretization

With the help of the PALIA suite [4], daily temperature information about
Valencia city was fused with the Emergency Service data, assigning temperature
to the date of each case.

Temperature information was then discretized, generating sub-groups of cases:
15-20oC, 20-25oC, 25-30oC, 30-35oC.

Inaccurate data (i.e. blank information, wrong dates) were removed, leaving
393,963 correct traces corresponding to visits to the ED.

PALIA process mining algorithm was applied to the data.
The Interactive Process Indicator (IPI) with information from all the visits

may be seen in Figure 1, where the green-to-red color gradient represents shorter
to longer duration in the nodes (accounted for by median duration) and lower
to higher number of visits in the transitions.

The Waiting 1 to 5 and Attention 1 to 5 nodes represent the queues (and
level of emergency, top to bottom) that each patient is assigned after the arrival,
at the triage step. Afterwards, the patient returns home, though he or she could
also be admitted into the hospital, or finish in exitus, among other possibilities.
The emergency service modelling has been described elsewhere [6].

2.2 Temperature and Heat Strokes

The first study is related to daily weather temperature and heat strokes. As
the WHO points [1], heat is one important factor that affects mainly the elder
population, causing cardiovascular and respiratory diseases. In 2003, an excess
70,000 elderly people died due to a heat wave [1].

Interactive Process Indicators were generated for each temperature range and
it was observed that the attention of patients with heat stroke took longer the
higher the temperature.

As seen in Figure 2, attention time is highest for the group including daily
temperatures of 25-30oC, while there were not enough cases in the 30-35oC range.



4 Lull, Dogan et al.

Fig. 1: IPI representing all the visits, including 393,963 traces after incorrect
traces were discarded. Redder color in nodes represent higher time in that phase
while redder color in transition means larger number of cases in that transition.

2.3 Otitis cases related to temperature

A high number of otitis (inflammation of the ear due to infection) cases were
detected that related to high temperature. Their IPI is shown in Figure 3.

As can be seen in Figure 3, there were no otitis cases among the 568 diagnosed
ones that were considered as serious, since none were triaged in the most urgent
queues, 1 and 2.

It was observed that the number of otitis patients related to the number of
general patients increased with temperature, as seen in Figure 4.

Although the attention of those patients took little time, their wait time was
very high (as seen in Figure 3. This indicates a higher load of waiting rooms.

2.4 Harsh changes in temperature and ED

In order to study how sudden changes in weather (a phenomenon related to
climate change) affect the ED, harsh changes in day-to-day temperature were
detected and those with a higher sudden change were selected and their processes
were visualized and studied.

In order to select the days with higher changes, they were compared: Each
day’s minimum temperature was subtracted to the minimum temperature from
the previous day. The same calculation was performed for the maximum and
the average temperatures. Finally, those values were multiplied and a threshold
of 100 was introduced, accounting for 14 days with increased temperature and
17 days with reduced temperature. Two groups were created, one with harsh
increases in temperature from day to day, and the other one with harsh decreases.
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The IPI that represents days without steep day-to-day changes in tempera-
ture is shown in Figure 5.

The comparison between days with a high change in temperature compared
to the previous one, generally showed higher attention times. Specifically, for
increases in temperature, attention in queues 2 and 3 took longer than days
with no significant change in temperature (see Figure 6). The same situation
happened for steep temperature decreases, with a higher attention time and
wait time for patients classified in queue number 3, and wait time for queue 5
was also higher, along with the triage time (see Figure 7). These findings were
statistically significant. There were no statistically significant reductions in time.

In order to assess the significance in the differences, the normality of each
population of durations was assessed by the Kolmogorov-Smirnov test. In case
both populations are normal, a Student T test is applied. Otherwise, a Mann-
Whitney-Wilcoxon is applied. In any case, a p value is applied as a threshold
to determine statistical significance between the populations. In this study a p
value of 0.05 was set as the threshold for statistical significance.

Yellow circles around nodes indicate a significant statistically difference be-
tween the duration in the population of days with a steep change compared to
days without important changes in temperature. In the IPIs that compare to the
baseline, greener means higher times while redder means lower (negative) times
(Figures 6.b and 7.b).

3 Conclusion and Discussion

This study considered data collected from an emergency department (ED) at a
Hospital in Valencia city, from 2015 to 2018. 483,229 visits created by 192,884 pa-
tients were investigated for four years. The effects of temperature on heat stroke
and otitis cases are investigated in this study by analyzing process flows, along
with a general investigation about the effects of steep changes in temperature
on the Emergency Departments.

Valencia is a warm Mediterranean coastal city, so the weather is generally
mild. However, we could detect changes in the processes inside the Emergency
Department that depended on weather temperature.

Firstly temperature data was categorized and linked to process cases to ex-
plore possible effects of global warming. Then PALIA algorithm created process
flows of patients under categorized (discretized) temperature data. It was ob-
served that Heat Stroke processes in EDs took longer the higher the tempera-
ture. There were also many more cases in the range of 25 to 30oC. The number
of cases confirms the intuition that sunburns are more prevalent the higher the
temperature (it should be considered that there were roughly 26% days with an
average temperature at or above 25oC across the years of the study). The higher
treatment time span per case could be thought of as intuitive too, but in this
case the effect of global warming on the EDs is clear: Since global temperature
keeps increasing, sunburns are expected to grow in number and EDs will have
more cases that will need extra attention time.
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In the case of otitis, this was an unexpected finding. It should be reviewed
how much confounding factors played a role in the cases, such as infections due
to longer times spent in swimming pools as is usually the case during the summer
vacations. This could nevertheless that waiting rooms could be overcrowded in
humid areas with high temperatures.

The study also presented the effects of sudden changes in weather conditions
to the ED. Generally, time spent at the waiting rooms and while being attended
were longer for both sudden temperature increases and decreases. This explo-
ration points in the direction that the more the sudden changes in temperature,
the more collapsed EDs will be. And sudden changes in temperature are more
and more frequent due to climatic change.

With the presented results, the study puts forwards that global warming has
a significant impact on Emergency Department processes.
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(a) 20-25oC

(b) 25-30oC

(c) 30-35o

Fig. 2: Interactive Process Indicators (IPIs) with groups of average temperature
per day, in Heat Stroke patients.
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Fig. 3: IPI for otitis patients. Gradient colors represent the same durations as in
Figure 1.

Fig. 4: Relative number of otitis cases (percentage of cases by general emergency
patients), and its increase with temperature.
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Fig. 5: IPI with information on days without harsh temperature changes. The
redder the color, the longer the time at a node. Colors (thus durations, are
directly comparable between this figure and the ones with harsh increases and
decreases in temperature).

(a) IPI for harsh increase in temperature (b) Same IPI, compared to baseline

Fig. 6: IPIs for ED patients in days with steep increases in temperature compared
to the previous day.
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(a) IPI for harsh decrease in temperature (b) Same IPI, compared to baseline

Fig. 7: IPIs for ED patients in days with steep decreases in temperature compared
to the previous day.


