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Abstract. While several techniques for detecting trace-level anomalies in
event logs in offline settings have appeared recently in the literature, such
techniques are currently lacking for online settings. Event log anomaly
detection in online settings can be crucial for discovering anomalies in
process execution as soon as they occur and, consequently, allowing to
promptly take early corrective actions. This paper describes a novel
approach to event log anomaly detection on event streams that uses
statistical leverage. Leverage has been used extensively in statistics to
develop measures to identify outliers and it has been adapted in this paper
to the specific scenario of event stream data. The proposed approach has
been evaluated on both artificial and real event streams.
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1 Introduction

Information logged during the execution of business processes is available in
so-called event logs, which contain events belonging to different process instances
(or cases). Each event is described by multiple attributes, such as a timestamp
and a label capturing the activity in the process that was executed.

Event logs are prone to errors, which can stem from a variety of root
causes [1,2], such as system malfunctioning or sub-optimal resource behaviour.
For instance, sloppy human resources may forget to log the execution of specific
activities in a process, or a system reboot may assign a different case id to all the
new events recorded after rebooting. Errors in event log hamper the possibility
of extracting useful process insights from event log analysis, and should therefore
be fixed as early as possible [20].

To this end, the research field of event log anomaly detection (or event log
cleaning) has emerged recently, providing methods to detect anomalies at trace
level [1,2,9,10,13], i.e., concerning the order and occurrence of activities in a
process, and at event level [15,16,18], i.e., concerning the value of attributes
of events, using a variety of different approaches. Note that event log anomaly
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detection is normally (process) model-agnostic, that is, it does not assume the
existence of a process model or clean traces from which a model can be extracted.
This aspect separates this research field from traditional process mining research
on compliance checking [14].

In the specific case of online settings, i.e., event streams, while research
has recently emerged in the field of online compliance checking, only the work
by Tavares et al. [19] addresses the issue of anomaly detection. In particular,
the authors propose a method to detect point anomalies specified by Principal
Component Analysis (PCA). These point anomalies, however, do not normally
reflect real-life anomaly patterns, such as inserting, skipping or switching events,
commonly considered by event log anomaly detection in offline settings. Therefore,
we argue that there is a lot of potential for new research in this area.

More in general, event log anomaly detection in online settings can be crucial
for discovering anomalies in process execution as soon as they occur and, conse-
quently, allowing to promptly take early corrective actions. The online settings,
however, obviously introduce additional challenges to the design of an event log
anomaly detection method. In particular, owing to the finite memory assumption
of online settings [4,5,6,19,20], only a limited number of (recent) events are avail-
able at any given time to take a decision. This prevents to apply effectively some
of the approaches that have been proposed in the literature for event log anomaly
detection in offline settings. Probabilistic methods that detect anomalies after
having created an intermediate model of frequent process behaviour [1,10,13] are
hampered by the fact that only a limited number of events may be available
to create such models. Online settings also prevent the application of machine
learning reconstructive techniques for anomaly detection, e.g. [16,17]. These, in
fact, normally rely on deep learning models, which require a high number of data
points (complete process traces in this scenario) to be trained effectively. Also,
any update of these models may require a long training time.

In this paper we propose an information-theoretic approach to online event log
anomaly detection at trace level. Specifically, we devise an anomaly score based
on statistical leverage [11]. The leverage is a relative measure of the information
content of observations in a dataset that has been used extensively in statistics
to develop observation distance measures and outlier detection techniques. Since
leverage captures the information content of one observation in respect of all
others in a dataset, the anomaly score proposed in this paper can always be
calculated reliably based on the information available at any point in time,
resulting in an anomaly detection method that does not require extensive amount
of data to be executed effectively.

After having presented the related work (in Section 2), Section 3 presents
a trace anomaly score based on the notion of statistical leverage. Then, we
discuss how this score can be applied to anomaly detection of streams of events,
addressing issues such as the grace period, the finite memory assumption, and the
identification of anomaly detection thresholds. The proposed method is evaluated
(in Section 4) on both artificial and real event logs injected with trace-level
anomalies. Conclusions finally are drawn in Section 5.
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2 Related work

While there is only limited literature regarding online event log anomaly detection,
a number of recent contributions have focused on online conformance checking.
To some extent, conformance checking can be seen as model-aware anomaly
detection, since process models, given or extracted from clean traces, can be seen
as signatures of positive behaviour to detect anomalies. As referred by [6], there are
currently two research lines in online conformance checking: the prefix-alignment
approach [20] and the model-based approach [4,5,6].

Conformance checking/alignment of streaming events tends to overestimate
the computation of optimal alignments. In order to avoid this issue, [20] pro-
vides the first incremental/online conformance checking technique that uses
prefix-alignment. Prefix-alignment [20] is characterised by high computational
complexity and prevents to define a warming up period. Alternatively, Online
Conformance Transition Systema (OCTS) [4,5] can partially check compliance
on regions of a process. This technique also suffers from high computational
complexity and prevents to consider the warm start scenario. In [6], the first
solution to achieve a warm start with streaming events has been proposed by
introducing weak order relations, that have reduced computational complexity.

Regarding event log anomaly detection, as mentioned in the Introduction,
Tavares et al. [19] have first applied the online clustering algorithm DenStream [7]
to detect anomalies on event streams. DenStream clusters cases into two groups,
normal and anomalous, using histogram-based frequency of activities contained
in each case. Since the histogram-based frequency ignores the sequence of events
in traces, DenStream detects point anomalies in event logs defined by Principal
Component Analysis (PCA) [21].

3 Research framework

There are two different elements in the proposed framework: the anomaly score
and the anomaly detection method. The former (presented in Section 3.1) concerns
the definition of a trace anomaly score based on statistical leverage. The latter
(Section 3.2) concerns setting a threshold value above which a trace is considered
anomalous based on its anomaly score.

3.1 Anomaly score

Statistical leverage [11] is a measure indicating how far away each observation is
scattered from other observations in a dataset. It has been used as a key support
measure for developing different observation distance metrics, such as Cook’s
distance, the Welsch-Kuh distance, and the Welsch’s distance.

Given a matrix X, with X ∈ RJ×I , of a dataset with J observations and I
numerical attributes (or variables), the leverage of the observations in X are the
diagonal elements of the projection matrix H = X(XTX)−1XT . Specifically, the
leverage of the j-th observation in X is the diagonal element hj,j ∈ H, which is
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Case_ID Event_ID Activity_Name CompleteTimeStamp

CaseX

𝐸𝑋1 𝑎1 2019/10/27 10:25:21

𝐸𝑋2 𝑎2 2019/10/29 12:31:48

𝐸𝑋3 𝑎3 2019/10/29 13:01:13

CaseY
𝐸𝑌1 𝑎2 2019/10/28 09:41:53

𝐸𝑌2 𝑎4 2019/10/30 14:25:51

CaseID EventID 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 CompleteTimeStamp

CaseX

𝐸𝑋1 1 0 0 0 2019/10/27 10:25:21

𝐸𝑋2 0 1 0 0 2019/10/29 12:31:48

𝐸𝑋3 0 0 1 0 2019/10/29 13:01:13

CaseY
𝐸𝑌1 0 1 0 0 2019/10/28 09:41:53

𝐸𝑌2 0 0 0 1 2019/10/30 14:25:51

CaseID 𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟏𝟑 𝒂𝟏𝟒 𝒂𝟐𝟏 𝒂𝟐𝟐 𝒂𝟐𝟑 𝒂𝟐𝟒 𝒂𝟑𝟏 𝒂𝟑𝟐 𝒂𝟑𝟑 𝒂𝟑𝟒

CaseX 1 0 0 0 0 1 0 0 0 0 1 0

CaseY 0 1 0 0 0 0 0 1 0 0 0 0

Step 1. One-hot encoding

Step 2. Concatenate grouped events & 0-padding

0-padding

Fig. 1: One-hot encoding and 0-padding

comprised by definition between 0 and 1. The higher its leverage, the more likely
an observation to be an anomaly.

Our objective is to detect anomalies at the level of occurrence and order of
events in traces. Therefore, we can abstract an event log E as a set of J traces
{σj}j=1,...,J . Each trace is a sequence of events ei,j of variable length Nj , i.e.,
σj = {e1,j , . . . , eNj ,j}. Events are ordered in a trace by timestamp in ascending
order and are defined by the activity that they represent, which is one in a set
A = {a1 . . . , aK} of K possible activity labels.

In order to define a leverage-based anomaly measure of traces in an event
log, two pre-processing steps are necessary. The first one is an integer encoding
step. This is necessary because the attributes of a dataset X must be numerical
to calculate H, while the activity attribute in event logs is categorical. Second,
events in an event log must be aggregated at trace level, such that the resulting
matrix X has J rows, i.e., one for each trace. In conclusion, the projection matrix
H(E) can be calculated by considering an observation matrix X(E) obtained
from E applying the following pre-processing steps.

In the first pre-processing step (see Figure 1), similarly to [16], we apply one-
hot encoding, that is, each event ei,j is encoded into a set K dummy attributes
di,j,k such that:

di,j,k =

{
1 if ei,j = ak

0 otherwise

Then, for trace-level aggregation, the one-hot encoded events are horizon-
tally concatenated for each trace. Since traces have different length, for the
traces shorter than the longest one(s) in E, i.e., with less events than Nmax =
maxσj∈E{Nj}, zero padding is applied. For example, given a case consisting of
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4 events and Nmax = 5, the fifth event of this case is zero padded, therefore,
d5,j,k = 0, ∀k. Based on this pre-processing, an event log E is encoded into
an observation matrix X(E) with J rows (traces) and I = Nmax ×K columns
(attributes).

Using X(E), we can now define a first leverage-based anomaly score l̂(σj) by
extracting the diagonal elements of H(E) = X(E) · (X(E)T ·X(E))−1 ·X(E)T :

l̂(σj) = hj,j

a00 a01 a02 a03 a04 a05 a06 a07 a08 a09

0 0 0 1 0 0 0 0 0 0

a80 a81 a82 a83 a84 a85 a86 a87 a88 a89

0 0 0 0 0 0 0 0 0 0

7

5

4

3

1 111

2

case.01
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case.04

case.05

case.06

case.07

case.08

case.09
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case.12
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case.14

case.15

case.16
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case.20

case.21

case.22

case.23

case.24

case.25

(a) Histogram for trace length (b) Preprocessed matrix of log

Fig. 2: Seesaw effect of zero-padding

This first anomaly score is likely to be biased by the zero-padded attributes
in the aggregation pre-processing step. Normally, these zero-padded attributes
should be treated as null values by any statistical method and therefore not
considered in the analysis. However, this is not the case when calculating l̂(σj).
The presence of 0-padded values, as shown in Figure 2, creates a a seesaw effect
that increases the leverage of longer traces and decrease the one of shorter traces.
Shorter traces, in fact, are more likely to be considered similar to each other,
and therefore not anomalous, because they are encoded into a higher number of
zero-padded values.

In order to counter this issue, we introduce a weighting factor wj as a function
of the trace length to increase/decrease the leverage l̂(σj) of shorter/longer traces
σj . This weighting factor is calculated by first normalising the trace length Nj in
the range [0, 1]. This is done by applying the Z transformation to normalize Nj
to the average mean[Nj ], followed by the application of a sigmoid function. The
sigmoid-based normalisation is generally used to improve the fit accuracy and
decrease the computational complexity of the fitting model [12]:

sig(Zj) =
1

1 + e−Zj
, with Zj =

{Nj −mean[N ]}
stdev[N ]

(1)

The weighting factor wj is then defined as:
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wj =
[
1− sig(Zj)

]c(Nmax) (2)

The power coefficient c(Nmax) is required to adjust the strength of the
weighting factor for different event logs. Intuitively, if all traces in a log have
similar length, then this adjustment factor should be low, approaching 1; if trace
length variance is very high, then the adjustment should be higher.

To define an appropriate value of the power coefficient c(Nmax), a relation
between Nmax and the anomaly detection performance bias should be first found.
However, this relation can only be estimated and not optimised because trace
length has no upper bound, which would lead to a non-finite state optimisation
problem. Therefore, we have estimated the value of c(Nmax) by fitting a non-
linear regression using 6 real-life event logs1 . To model a non-linear regression
function, we use the values of c(Nmax) that achieve the highest F1-score in
anomaly detection using the 6 different logs in offline settings, i.e., considering all
the traces in an event log at the same time in the observation matrix X. Under
significance level 0.01, the non-linear equation in Eq. 3 has been fitted with two
coefficient parameters a and b as in Table 1.

c(Nmax) =

{
−2.2822 + (Nmax)0.3422 if Nmax > 2.2822

0.3422

0 otherwise
(3)

Table 1: Result of fitted non-linear regression model: f(x) = a+ xb

Parameter Estimate Standard Error t value p-value
a -2.2822 0.3533 -6.46 0.0030
b 0.3422 0.0191 17.96 0.0001

In the end, using the estimated power coefficient c(Nmax), we define the
weighted leverage-based anomaly score as:

l̂w(σl) = wj · l̂(σl). (4)

3.2 Online anomaly detection

After having defined an anomaly score, the proposed anomaly detection method
is complemented by the following four aspects: (i) grace period, (ii) finite memory
usage, (iii) update of leverage scores, and (iv) anomaly threshold setting. These
are described in detail next.

1 These event logs belong to the ones made available by the Business Process Intelligence
Challenge in 2012, 2013 and 2017
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Grace period. Similarly to other online anomaly detection methods in the lit-
erature [8,19], for practical reasons it makes sense to begin taking decision on
trace anomaly only after having received a sufficient number of events. For this
purpose, we introduce the parameter Grace Period (GP), which specifies the
minimum number of traces and events per trace that must be received before
trace anomaly decisions can begin to be taken. In other words, the GP prevents
to run the anomaly detection model at early stages, when a sufficient number of
events has not been received yet. In this paper, the GP parameter is defined as
the number of traces for which at least 2 events have been received. For example,
if GP=100, the anomaly detection starts from the first event after having received
at least the first 2 events of 100 different traces.

Finite memory usage. Another condition to be satisfied by an anomaly detec-
tion method in online settings is the one of finite memory usage. In principle,
events may be infinitely received as time goes by. However, handling an infinite
number of events would require infinite memory, which is impossible in practical
settings [19,20]. Therefore, to calculate leverage using always a finite number of
events received from a stream, we introduce the parameter windows size (W),
defined as the number of recent cases that are considered to determine anomalies
when a new event is received. More formally, at a given time t, let us refer to Et
as the set of events received until t. Now, if the number of (possibly incomplete)
traces represented by events in Et is more than W , then the earliest traces are
removed from the set of traces considered to calculate the projection matrix
H. Specifically, events of the trace whose first event is the earliest in Et is first
removed and so on until the number of traces represented in Et is W.

Update of leverage scores. Each time a new event is received, the leverage of the
case to which this event belongs is updated (see Figure 3). More in detail, let us
assume that an event ei,j is received at time t. Then, after having possibly removed
some cases represented by events in Et to maintain the finite memory usage
assumption, the leverage of the remaining traces l̂w(σj) is calculated. The result
obtained determines, based on the value of the considered anomaly detection
threshold, whether the trace σj is considered anomalous after the arrival of event
ei,j , or not. This procedure is replicated each time a new event is received.

Anomaly threshold setting. The objective of anomaly detection is ultimately to
determine whether traces are anomalous or not. Therefore, the problem of anomaly
detection can be reduced to a binary classification problem. Based on the anomaly
score l̂w(σj), a decision should be made whether the trace σj is anomalous or not.
This is normally done by setting the value of an anomaly detection threshold T
for l̂w(σj), such that a trace is anomalous if l̂w(σj) > T . In this work, we consider
three constant thresholds and one variable threshold. We consider the constant
values Tc1 = 0.1, Tc2 = 0.15, and Tc3 = 0.2. These values are based on our
experience in experiments in online and offline settings, where anomalous traces
tend to have an anomaly score l̂w(σj) greater than 0.1. As variable threshold, we
consider the value Tv = meanσj⊆Et

[l̂w(σj)]+stdevσj⊆Et
(l̂w(σj)), which calculates
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Step 1. A new 300th event in event streams

Case.70

Step 2. Preprocess 
the event log of total 300 events

(one-hot encoding and zero padding)

Event_300
Case.70

Step 3. Calculate anomaly score

Anomaly score (෠𝓵𝒘)

0.09 

0.19 

0.04 

0.02 

0.32 

0.01 

0.06 

0.08 

0.05 

0.21 

…

0.83

0.07 

0.16

Step 4. Allocate the anomaly score of case.70 
to corresponding event (Event_300)

Event_ID Activity Timestamp Anomaly score (෠𝓵𝒘)

Event_1 A 2019/09/01 09:10 0.00 (●)

Event_2 A 2019/09/01 09:25 0.01 (●)

Event_3 O 2019/09/02 09:05 0.01 (●)

Event_4 B 2019/09/02 15:51 0.00 (●)

Event_5 Y 2019/09/03 09:13 0.26 (●)

Event_6 C 2019/09/04 16:23 0.25 (●)

Event_7 C 2019/09/04 17:02 0.01 (●)

… … … …

Event_297 A 2020/08/08 11:23 0.05 (●)

Event_298 E 2020/08/09 13:10 0.16 (●)

Event_299 B 2020/08/10 14:44 0.19 (●)

Event_300 Z 2020/08/10 16:36 0.83 (●)

zero padding

Event_ID Activity Timestamp Anomaly score (෠𝓵𝒘)

Event_1 A 2019/09/01 09:10 0.00 (●)

Event_2 A 2019/09/01 09:25 0.01 (●)

Event_3 O 2019/09/02 09:05 0.01 (●)

Event_4 B 2019/09/02 15:51 0.00 (●)

Event_5 Y 2019/09/03 09:13 0.26 (●)

Event_6 C 2019/09/04 16:23 0.25 (●)

Event_7 C 2019/09/04 17:02 0.01 (●)

… … … …

Event_297 A 2020/08/08 11:23 0.05 (●)

Event_298 E 2020/08/09 13:10 0.16 (●)

Event_299 B 2020/08/10 14:44 0.19 (●)

Event_300 Z 2020/08/10 16:36 ?

Case.70

Case.01

Case.02

Case.03

Case.01

Case.02

Case.02

Case.01

Case.70

Case.72

Case.72

Case.01

Case.02

Case.03

Case.01

Case.02

Case.02

Case.01

Case.70

Case.72

Case.72

Case.70

Case.01

Case.02

Case.03

Case.04

Case.05

Case.06

Case.07

Case.08

Case.09

Case.10

…

Case.70

Case.71

Case.72

Fig. 3: Example of anomaly detection using a fixed anomaly threshold T = 0.1

the threshold based on the mean and standard deviation of the leverage scores of
the traces considered in the observation matrix X. A similar principle to set the
anomaly detection threshold is used by [16] for the timestamp anomaly detection
threshold.

4 Evaluation

This section describes first the datasets that we used for evaluating the proposed
online anomaly detection framework. Then, we present the evaluation metrics and
experiment settings and, finally, we discuss the performance and computational
cost of the proposed framework.

We consider two artificial logs used by [18] and one real-life log publicly
available. The artificial logs are generated by simulating 2 process models (Small
and Medium in [18]) using the PLG2 tool. Regarding the real log, we consider
the Helpdesk event log, which contains events logged by a ticketing management
system of the help desk of an Italian software company. These logs have been
chosen because they have been considered by previous work in anomaly detection
and they are also sufficiently small to control the running time of experiments.
Descriptive statistics of these logs are reported in Table 2.

Evaluating an unsupervised approach of anomaly detection like the one
that we propose requires event logs with labelled traces (normal v. anomalous),
which are generally unavailable in practice. Therefore, a common practice in this
research field is to inject anomalies using different types of anomaly patterns in
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Table 2: Descriptive statistics of event logs (Log statistics are counted after
injecting anomalies)

Type Data Statistics Value

Artificial log

Small

-Number of cases 5,000
-Number of events 44,811
-Number of activities 20
-Average # of cases per day 5,000
-Average # of events per day 44,811

Medium

-Number of cases 5,000
-Number of events 29,683
-Number of activities 32
-Average # of cases per day 5,000
-Average # of events per day 29,683

Real log Helpdesk

-Number of cases 3,804
-Number of events 13,901
-Number of activities 9
-Average # of cases per day 10.94
-Average # of events per day 18.06

event log and creating labels during the anomaly injection process [1,2,3,16,18].
We consider the 5 anomaly patterns Skip, Insert, Early, Late, and Rework as
defined in [18]: in Skip, a sequence of events is skipped in some cases; in Insert,
one or more events are generated in random positions within existing traces; in
Early/Late, timestamps of events are manipulated such that a sequence of events
is moved earlier/later in a trace; in Rework, a sequence of events is repeated
after its occurrence. Anomalies are randomly injected in an event log until 10% of
the traces in the log have become anomalous. As far as performance measures are
concerned, we consider the typical measures for classification problems obtained
from the confusion matrix, i.e., precision, recall and F1-score. The datasets used
in this paper and the code to reproduce the experiments discussed next are
available at https://github.com/jonghyeonk/OnlineAnomalyDetection.

We set the GP to 1,000 cases and consider 3 values of window size W, i.e.,
W ∈ [1000, 2000, 3000]. A larger value of GP and W is likely to lead to better
and more stable performance, while also implying a higher computational cost.
The experiments are implemented in R on an Intel i7 Linux machine using a
single CPU and 5GB memory limit.

Table 3 shows the performance of anomaly detection in event streams for
different anomaly detection threshold values and different values of W. Note that
the 4 columns Tc1 to Tv report average performance measures calculated from the
start of the streaming (after the GP condition has been reached). It can be noticed
that the three constant thresholds show on average better performance than the
variable threshold Tv. To better observe a trend of performance improvement
as more events are received, the last two columns TF :100

v and TL:100v show the
average performance values calculated on the first 100 events received (after the
GP condition has been met) and last 100 events received, respectively. The result
shows a clear tendency of increasing performance. The performance is low at
the initial stage, and it increases remarkably for the last 100 events received.
Particularly in the case of the Helpdesk log, the proposed framework could not
detect any anomalous cases in the first 100 events, while the performance clearly

https://github.com/jonghyeonk/OnlineAnomalyDetection
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Table 3: Performance of online anomaly detection (average from the start of the
stream and calculated only on first/last 100 events)

Data Window size Time cost
(average sec) Metric Threshold

Tc1 Tc2 Tc3 Tv TF :100
v TL:100

v

Small

1,000 1.09
Precision 0.22 0.22 0.22 0.21 0.06 1.00
Recall 0.63 0.62 0.59 0.62 1.00 0.63
F1-score 0.33 0.32 0.32 0.31 0.11 0.77

2,000 1.07
Precision 0.26 0.25 0.25 0.25 0.06 1.00
Recall 0.61 0.60 0.57 0.61 1.00 0.63
F1-score 0.36 0.36 0.35 0.35 0.11 0.77

3,000 1.23
Precision 0.75 0.79 0.82 0.75 0.20 1.00
Recall 0.57 0.55 0.53 0.57 0.17 0.63
F1-score 0.65 0.65 0.64 0.65 0.18 0.77

Medium

1,000 1.42
Precision 0.16 0.17 0.17 0.15 0.50 1.00
Recall 0.72 0.71 0.71 0.73 0.29 0.50
F1-score 0.26 0.27 0.27 0.25 0.36 0.67

2,000 1.46
Precision 0.37 0.45 0.52 0.26 0.50 1.00
Recall 0.65 0.64 0.63 0.68 0.29 0.50
F1-score 0.47 0.53 0.57 0.38 0.36 0.67

3,000 2.06
Precision 0.28 0.30 0.31 0.25 0.50 1.00
Recall 0.67 0.67 0.66 0.67 0.29 0.50
F1-score 0.39 0.41 0.42 0.37 0.36 0.67

Helpdesk

1,000 0.34
Precision 0.06 0.06 0.06 0.06 0.00 0.50
Recall 0.99 0.98 0.96 1.00 0.00 0.96
F1-score 0.12 0.12 0.12 0.12 0.00 0.66

2,000 0.37
Precision 0.08 0.08 0.09 0.08 0.00 0.51
Recall 0.80 0.74 0.68 0.77 0.00 0.96
F1-score 0.15 0.15 0.15 0.14 0.00 0.67

3,000 0.39
Precision 0.09 0.11 0.13 0.10 0.00 0.61
Recall 0.59 0.49 0.39 0.60 0.00 0.93
F1-score 0.16 0.19 0.20 0.17 0.00 0.74

increases for the last 100 events. It should be noted that, as the number of
events received increases, the performance of the proposed framework is likely to
converge to the one showed by the average on the last 100 events. Regarding the
window size W, the average time cost increases with the value of W. A larger
window size also leads to better anomaly detection performance.

As an example, Figure 4 breaks down the performance of the proposed
framework along time, counted as the number of events received, in the case of
the Small event log with W=3000. It can be noted that the performance oscillates
wildly until 20,000 events are received. After that, the performance tends to
stabilise and, while the precision remains high, the recall also begins increasing
more regularly. After 30,000 events are received, all the performance metrics
appear to have become stable.

5 Conclusions

This paper has presented an approach to detect trace level anomalies in business
process event streams using an anomaly score based on statistical leverage. A
preliminary evaluation on artificial and real event logs also has been presented.
The results obtained in this paper are important to determine the future work in
this line of research.

First, the performance in the case of the Helpdesk log highlights an issue
with anomaly threshold setting. The constant values chosen for the experiment
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Event streams

Fig. 4: Performance values as number of events received increases (Small log is
applied, using Tv, W=3000)

(between 0.1 and 0.2) appear to be too low for this event log, which results in low
precision and F1-score and only high recall. This points to the need for developing
an advanced variable threshold that can adapt to the characteristics of different
event logs.

Another limitation of the proposed approach, which also impacts the perfor-
mance, is the fact that it does not distinguish between incomplete and completed
traces when calculating the anomaly score. Therefore, many traces may be con-
sidered anomalous because they are incomplete, even though they will turn into
normal at some point in the future as more events are received. A possible strategy
to prevent this is to organise the events received into batches by different prefix
length before calculating the anomaly score. This is inspired by [20] that, in the
case of online compliance checking, addresses the issue of trace incompleteness
using prefix-alignment.

Finally, considering word-embedding instead of one-hot encoding and zero-
padding during pre-processing may be likely to reduce the size of the observation
matrix X and, therefore, speed up the calculation of anomaly scores.
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Abstract. Many processes no matter what kind are regularly changing
over time, adapting themselves to external and internal circumstances.
Analyzing them in a streaming context is a very demanding task. Partic-
ularly the detection and classification of significant deviations is impor-
tant to be able to re-integrate these possible micro-processes. Assuming
a deviation of a certain process, the significance is implicitly given when
a high number of instances contain this deviation similarly. To enhance
a process the integration of or preventive measures against those anoma-
lies is of high interest for all stakeholders as the actual process core gets
discovered more and more in detail. Considering various areas of applica-
tion, we focus on previously neglected but potentially significant anoma-
lies like small changes in the disease process of a virus infection that
has to be discovered to develop an appropriate reaction mechanism. We
concentrate on non-conforming traces of a stream on which we compute
a local outlier factor. This allows us to detect relations between traces
based on changing outlier scores. Hence, hereby connected traces are clus-
ters with which we achieve the detection of concept drift. We evaluate
our approach on a synthetic event log and a real-world dataset corre-
sponding to a process representing building permit applications which
emphasizes the extensive applicability.

Keywords: Concept Drift Detection · Local Outlier Factor · Micro-
Clusters.

1 Introduction and Motivation

Nearly every established process consists of deviations, which potentially con-
tain valuable information impelling its context. E.g. by considering the Internet
of Things as highly attractive for botnet attacks, it is a very interesting task to
distinguish, detect and classify attack traces from operations of the ordinary pro-
cess. The classification task to identify device-threatening traces is pursued by
attack triage systems, in which our approach can provide outlier scores. A second
example is the analysis of disease spreading processes. Regarding the regulations
of the German public health department in the 2020‘s pandemic, symptomatic
people have to keep health journals during the course of an infection to record
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the timeline of symptoms. These journals are eventually gathered to construct
the typical disease process. Fever, dry cough and fatigue count as common symp-
toms for Covid-19 and represent the aforementioned process. Extraordinary and
more rare symptoms are: Loss of the senses of taste and smell, conjunctivitis
and the so called covid toes. Having these symptoms occur for some patients,
their disease process is non-conforming and a concept drift emerges. To extend
the process, the course of treatment and its effects can also be incorporated. In
general, the detection and classification of new types of infectious diseases can
be done independently of the deeper understanding of its nature and, therefore,
this procedure can also be mapped to various other diseases. Regarding busi-
ness processes, in case of structural changes in the business itself, the question
is, which deviations occur in reaction to initial changes. In particular, using a
building permit application process, we apply our approach to detect deviating
subprocesses as candidates for reintegration after a split of departments.

At large, process mining has its focus on conformance checking for a long
time. Particularly considering an anomalous group of traces which neverthe-
less belongs to the main process, can help to enhance the main process by
re-integrating this process deviation. The deviation itself qualifies for further
analysis by consisting of multiple similar instances. Hereafter, we refer to an
anomaly as a micro-cluster of non-conforming traces i.e. anomalous traces. This
micro-cluster is defined by multiple related process instances. The relation be-
tween traces can manifest itself in different ways. Therefore, a specific distance
between these instances is crucial, which will be defined for our specific case in
Section 3.

In this work, we introduce a novel approach to classify non-conforming traces
into micro-clusters on trace streams. Based on these clusters we then achieve a
more fine-grained concept drift detection. Specifically, the basis of our approach
is a stream of traces. As a combination of state-of-the-art methods from process
mining and an established algorithm from the field of machine learning and
data mining, our approach is very flexible due to its modularity. As mentioned
before the field of application is very wide concerning current emergency cases
but can also be applied to every other process which consists of interesting
and critical deviations. An evaluation on a synthetic event log and the building
permit application dataset from the BPI Challenge of 2015 demonstrates the
considerable effects of our method.

In Section 2 we analyze the existing work related to clustering traces to groups
of anomalies. Section 3 describes the background of our work. Our framework
and our algorithmic methods are explained in Section 4. Sections 5 and 6 address
the performed experiments and corresponding evaluation. We conclude our work
with Section 7.

2 Related Work

The aggregation of outliers by leveraging local outlier factor serves as means to
cluster data. In addition, LOF also incorporates concepts from density-based
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algorithms like reachability or core distance from the field of data mining [2].
However, a major difference to its original field of application is the goal, which
is not defined by finding local outliers, but is to find reductions of local outlier-
ness, which eventually yield a new micro-cluster. First and foremost, the focus
lies on finding groups of outliers, which define an anomaly of the underlying pro-
cess, and detect concept drifts of different degree. Because this anomaly consists
of a number of traces, it is highly probable, that there is a hidden micro-process
driving those process instances. For that reason, it is an important task to an-
alyze those micro-clusters and recognize the drift of the main process into one
of those micro-processes. The underlying idea to our approach is trace cluster-
ing [5], which is based on an embedding of traces into vector space. The overall
purpose is to split highly diverse processes into homogeneous subsets. Thus, the
complexity is reduced, while the interpretability is increased.

In comparison to our approach Richter et al. [9] also use the idea of lever-
aging a reference model for distance computation between traces. They aim at
clustering traces based on their distances to each other. However, the approach
requires manual user knowledge to define the agglomerative clustering manually.
It is not developed for stream application and does not provide further analysis
like concept drift detection as we do.

With TESSERACT[8], concept drifts regarding the time dimension are fo-
cused. Interim-times between events of a stream are used to derive a drift indica-
tor regarding sudden and incremental drifts. However, the change of completion
times of an event often can have other reasons than indicating a drift. Therefore,
we use the conformance of a trace by activity labels as a more direct indication.

Using statistical hypothesis testing Maaradji et al. [6] are detecting drifts
between consecutive batches of traces by comparing the distribution of runs
statistically. A subsequent paper by Ostovar et al. [7] focuses on the detection
of drift within a trace rather than between traces. By using sliding windows and
applying the G-test of independence this method even can be applied to event
logs which are highly variable. In our approach high variability also is supported
resulting in many micro-clusters which are given as means of drift categorization.

3 Preliminaries

In this section we describe the background of the methods, which will be har-
nessed in Sec. 4. These include a definition of trace streams, conformance check-
ing, the method to compute distances between traces and the procedure behind
the popular local outlier factor from the field of machine learning. Case identi-
fiers, activity labels and timestamps are the minimal components of event logs.
Their counterpart on streams can be defined similarly. In an event stream S an
event e is emitted continuously in a specific order, duration and by reference
to a certain case identifier. That means, that the context, in which the event is
emitted, is known. However, the differences between an event log and an event
stream is (1) the potentially infinite sequence of events and (2) the incomplete-
ness of a case, which means that at a certain point in time a case does not have
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to be necessarily completed, since a new event could possibly be executed in con-
text of this case [11]. Additionally the timestamp at which an event is emitted
depends on the stream. Thus, it can be neglected and we define #case(e) = c
and #act(e) = a for e = (c, a). Because of the different structure this type
of data needs a different handling compared to conventional process discovery.
Hence, we refer hereby to state-of-the-art methods in the literature and assume
incoming data to be given as traces #trace(c) = ĉ consisting of occurring events.
Furthermore, we check every trace for conformance against the reference model
and additionally against every micro-cluster model in each iteration. Thus, we
utilize a preferably fast but efficient conformance checking method. We decide
to apply token-based replay [10] as it has an advantage in speed compared to
alignments [1]. Furthermore, to concentrate on the applicability of our approach,
we focus on incremental and recurring drifts in Sec. 5 and Sec. 6.

To be able to provide every trace with a comparable distance property we
utilize the reference model by following the approach of Richter et al. [9]. By
interpreting the model as a map, we define the geodesic distance between two
traces as the average number of edges on the shortest paths between every vertex
of two traces. A transition is only counted as a vertex, if it is one of the tran-
sitions causing problems in the conformance checking procedure. The distance
computation follows the approach in [9] and is defined by the following formula
where X and Y are traces and x and y are transitions within:

dist(X,Y ) =
1

|X| · |Y |
·
∑
x∈X

∑
y∈Y

shortest path(x, y)

Essentially, every trace is reduced to its events, which cause problems on the
reference model. Thereafter, the reduced traces are compared pairwise by com-
puting the geodesic distance between every contained event. After we average
the result we get the required distance between two traces, which is also known
as average-linkage. The ulterior motive is, that for deviating traces one or mul-
tiple transitions can be determined, which lead to the low fitness value. These
transitions posses different distances to each other when the missing transitions
are filled up by the reference model and the amount of edges between the tran-
sitions are counted. Thus, traces deviating with similar problematic transitions
have a lower distance as deviating traces with very different problematic transi-
tions. This part as another module can be substituted by any other computation
method as well, which possibly leads to different results. The main part of our
novel method is the usage of the popular Local Outlier Factor developed by Bre-
unig et al. [3] from the field of machine learning. This algorithm is constructed
to detect local outliers in a dataset. Therefore, every trace is assigned a degree
(LOF ), which describes its outlierness with respect to the surrounding neigh-
borhood. The problem of different types of outliers, i.e. global versus local is
described in [3]. Local outlierness, therefore, is defined relatively to the neigh-
borhood of a data point. We leverage this perspective in our work by analyzing
traces with respect to their surroundings. These neighboring traces can be ar-
bitrarily distant to each other. If the average reachability distance, described
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below, between the neighbors is similar to the reachability distance of the trace
itself, it gets reflected in a LOF of ∼ 1.0. The LOF of a trace σ and the local
reachability distance lrd is computed in the following way:

LOFk(σ) =

∑
γ∈Nk(σ)

lrdk(γ)
lrdk(σ)

|Nk(σ)|
, lrdk(σ) =

|Nk(σ)|∑
γ∈Nk(σ)

reach− distk(σ, γ)

The variable k denotes the number of nearest neighbors surrounding σ, where
the set of these neighbors is called k -neighborhood (Nk(σ)). and lrd refers to the
local reachability distance: where reachability–distance is either the distance of
γ to its k-th nearest neighbor or the real distance between γ and σ depending on
which distance is greater. Analogously, if LOFk(σ)� 1.0 the trace is an outlier.

4 Dynamic Outlier Aggregation

Our novel approach combines conformance checking from Process Mining with
Local Outlier Factoring from the field of Data Mining to achieve the automated
detection and classification of deviating traces in streams. The emerging micro-
clusters are then used to detect concept drift on the aforementioned streams. This
procedure differs from [9] to the extent that we aim for concept drift detection
on streams. Richter et al. aim at clustering deviating traces by using a reference
model given by the main process. The resulting micro-clusters represent devia-
tions with increased potential due to its density. Furthermore, they do not pro-
vide means to the reader to automatically cluster or even classify new upcoming
data. Trace clustering on deviating traces could also be achieved by our approach
but it is not subject to this paper. After conformance checking of incoming traces
to both the reference and micro-models, only the non-conforming traces are ana-
lyzed.

Fig. 1. Overview of our approach. Steps 1-4 denote the
successive procedure to detect anomalous clusters.

Our approach can be
split into four modules
(see Fig. 1), i.e. initial
process discovery, con-
formance checking, LOF
computation and micro-
cluster aggregation. The
former has to be done
once for initiation to pre-
pare a process model as
a reference for further
computations. The latter
three steps are processed
repeatedly after initia-
tion. At first, in the initia-
tion phase, a main model



6 L. Zellner et al.

is discovered, which serves as a reference model (Fig. 1 (1)). This reference
model can be normative or declarative but the premise is that it does not yet
hold traces, which actually should be considered non-conforming. Afterwards,
in the iteration phase, the conformance of the incoming traces is checked and
filtered by non-conformance, which means that we only analyze non-conforming
traces in the following (Fig. 1 (2a and b)). Therefore, we use the popular method
of token-replay as a conformance checking step. Here, the reference model is used
to compute the fitness of a trace. For this purpose, the four counters produced,
consumed, missing and remaining are used as described in Sec. 3 to determine, if
a trace fits a model or not. Every conforming trace then is removed and the next
steps are only based on the set of non-conforming traces. In the next step, we
compute a local outlier factor (LOF ) on every trace (Fig. 1 (3)). Gradually, the
latest incoming traces are filtered in the aforementioned way and the local outlier
factor of every stored trace is re-computed. Those computations serve as a snap-
shot, at which we decide, if there is a relation between two or more traces. This
decision is based on the fact, that the scores of those traces drop below a given
clustering threshold at a specific snapshot. For those corresponding traces a pro-
cess model is discovered (Fig. 1 (4)). These micro-cluster models then are used
as additional reference models, against which every incoming trace is checked be-
fore it is labelled non-conforming (Fig. 1 (2b)). Since the non-conforming traces
are not removed from the set of local outlier factors, the computation of it has
an increase in accuracy over time until it reaches the size of a sliding window.
This sliding window is used to limit the complexity of re-computations. Alg. 1
depicts the described procedure in pseudocode. We assume that the streaming
events are already gathered to traces. This means, that the procedure, in which
we wait for a trace to start and end, is transferred to already existing efficient
algorithms [8]. Furthermore, the outcome of this procedure does not have to be
completely accurate since our approach can cope with inaccuracies arising in
this step. In addition, it is assumed that the process model, which we use as a
reference, is already discovered, solely relies on conforming traces and only has
to be prepared for further usage. Another possibility is to provide a normative
model by a domain expert. The iteration phase comprises repeating steps mainly
consisting of the novel approach we call Dynamic Outlier Aggregation. This ag-
gregation refers to the grouping of traces. Thus, if there is a number of traces, of
which the LOF scores are below a constant threshold, which T exceeds a given
constant number K, these traces are aggregated to micro-clusters. To compute
the LOF for each trace we utilize a matrix holding all distances between every
trace in the window. We start with the first trace having a distance of 0.0 to
itself. For every trace being emitted afterwards by the stream we compute the
distance between the current and every other trace in the sliding window based
on their transitions causing problems on the reference model. The pairwise com-
bination of the traces and the cartesian product between all these problematic
transitions of a pair form the basis for further computation. The average of the
overall hop count of the shortest paths between every aforementioned transition
yields our resulting lower triangular matrix, which then is extended to a sym-
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Algorithm 1 Dynamic Outlier Aggregation
Input: The emission interface of a stream SI of single traces i, a lower bound L and a sliding

window size W , MinPts K for LOF computation and a threshold T , below which a
trace is assigned to a micro-cluster

Output: A collection of micro-clusters represented by event logs and
a LOF for each trace

1: R← discover reference model() . Assumption: Traces are conforming

2: MC ← ∅ . MC denotes the set of micro-clusters

3: IBT ← ∅ . IBT denotes the set of non-conforming traces with LOF below threshold

4: M ← ∅ . M denotes the distance matrix

5: while |SI| > 0 do
6: Get next i
7: if !fitsR(i) ∧ !fitsM(i) then . Check conformance with reference model and

micro-cluster models

8: M ← compute distances(IBT, i)
9: IBT ← token replay(R, i) . Save activities with problems

10: M ← sym(M) . Create symmetric matrix from M

11: if |rows(M)| > L then
12: IBT ← IBT [1 :] . Remove first element

13: if |rows(M)| > W then
14: M ← delete first row col(M)
15: end if
16: . Separate traces forming a micro-cluster from outliers

17: micro cluster ← separate(IBT, lof, T )
18: if |micro cluster| ≥ K then
19: MC ←MC ∪micro cluster
20: end if
21: end if
22: end if
23: end while

metric matrix for further computation. Besides, if in the next iteration step the
number of distances exceeds W , the oldest trace is removed and so on. Thus,
we can use the pre-computed distance matrix to return LOF for every trace.
Because the LOF of every trace potentially changes in each iteration step, we
have to separate the possible micro-clusters from the outliers. On that account,
a threshold T is required, which indicates the affiliation of a trace to a micro-
cluster. Hence, every trace, which possesses a LOF below T , is returned in a
separate log. However, the connected trace and LOF is not yet removed from
the matrix. The reason behind it is the increasing accuracy of LOF the more
traces are located in a micro-cluster. Since the computational complexity of LOF
is O(W 2), the overall complexity of Dynamic Outlier Aggregation is O(W 3) in
a naive implementation. However, the theoretical complexity analysis based on
stream data seems high, the actual complexity strongly depends on the window
size, which covers only a small portion of the data. Thus, by choosing a fixed
window size, which should be preferably small compared to the expected emitted
data, the goal of our approach can be achieved in constant time (O(1)).

5 Evaluation on a Synthetic Log

The proposed approach can be inspected and reproduced on GitHub1. The im-
plementation is used to experiment with both synthetic and real-world logs. In

1 https://github.com/zellnerlu/DOA

https://github.com/zellnerlu/DOA
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addition to the applicability on real-world data, we focus on the detection of
recurring drifts as an example. Furthermore, the results of the usage within a
fixed parameter set are compared. Moreover, the limitations of our approach are
discussed.

As a proof of concept we create an event log consisting of 1000 traces with
the Processes and Logs Generator (PLG2) by Burattin [4] with which it is also
possible to produce an evolution of a given process. Thus, we start with a rather
small main process consisting of 6 activities and 2 XOR-gateways. Addition-
ally, 3 deviation processes with the size of 1000 traces each are created by using
the aforementioned option and the given parameters such as depth, AND/XOR
branches, AND/XOR weight etc. are adjusted accordingly, such that the prob-
ability of occurrence is de- and increased. We inject the drifts, by splitting up
and interleaving parts of the deviation processes with parts of the main pro-
cess. Thus, an event log is produced, which consists of all 4 processes appearing
successively. Here, we concentrate mainly on recurring drifts as an example to
illustrate the process of detection. The scalability of our approach is evaluated
by measuring the required time of the trace from comparison to the other traces
in the sliding window until the clustering step. Furthermore, we utilize F1-Score
as a quality measure, which is defined as the harmonic mean between precision
and recall. Since our approach heavily relies on the creation of process models in
different steps of the framework, we globally measure precision and recall instead
of using a multi-class perspective.

5.1 Execution Times

We perform the experiments on an Intel Core i7 with 3.2Ghz and 32GB RAM.
The operating system is Windows 10. The measured time required for the dis-
tance computation to the other traces in the sliding window as well as the clus-
tering procedure varies between 1ms and 20ms with an average duration of about
7ms. In Fig. 2b the application of a sliding window of size 200 shows an outlier
in terms of maximum duration, which indicates the increasing time requirement
with larger sliding windows. Nevertheless, this shows the applicability at least on
trace streams and the approach also qualifies for an extension to event streams
due to the fast processing.

5.2 Impact of Inter-Drift Distance and Sliding Window Size

At first we analyze the detection quality by varying the distance between drifts.
This means, that we vary the size of the interleaved parts, namely inter-drift dis-
tance, by 5-75%, which means that 50, 100, 250, 500 and 750 traces of every event
log are arranged in sequence. This is repeated until log completion. We choose
LOF plots and Gantt Charts for visualization, where the x-axis shows the global
trace identifiers, i.e. trace IDs within all emitted traces and the y-axis represents
the LOF of a trace (LOF plot), i.e. the micro-cluster affiliation (Gantt Chart).
It is also perceivable, that the LOF of some traces is highlighted with a certain
color, i.e. the bars in the Gantt Charts are depicted with a certain color. This
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(a) Analyzing the performance on various
inter-drift distances by number of inter-
leaved traces and the application of differ-
ent sliding window sizes.

(b) Execution times by using different sizes
of sliding windows. Min. Trace Duration is
between 30 and 60 microseconds.

Fig. 2. Quality measure and execution time depending on the sliding window size

color represents the affiliation of the trace to a certain micro-cluster model. As it
is shown in Fig. 2a, the resulting F1-Score increases in all three cases similarly,
when increasing the inter-drift distance. This is due to the decreasing number
of changes, which have to be detected. Thus, the probability of detecting False
Positives decreases, as well. Fig 2a shows a continuously high detection quality,
which also can be confirmed visually in Fig. 3. One can see, that micro-cluster

Fig. 3. Recurring drift detection on a a syn-
thetic log with inter-drift distance of 50. The
change points are emphasized with vertical
black bars.

Fig. 4. Resulting Gantt Chart on an
inter-drift distance of 750 and a sliding
window size of 100.

0-2 are reliably representing the injected deviations from the main model. Inter-
estingly, our approach regularly detects additional micro-clusters (3-5) beyond
change points, which neither resemble recurring drifts nor were injected by de-
sign. This could be for reason of overly similar traces, which also neither do
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fit to the reference model nor to one of the micro-cluster models. Nonetheless,
the visualization shows a clear detection of recurring drifts, where false micro-
clusters can be simply excluded and the remainder can be analyzed by a domain
expert further on. When we increase the size of the sliding window by keeping
a relatively small lower bound L, we get a result as shown in Fig. 4. Here, the
recurring drifts are still detected very well, but two micro-cluster models, e.g.
green and yellow or purple and red, share one injected cluster each. In the lat-
ter pair another red cluster besides the first one is created, because the purple
cluster was initially created before the change point at trace id 1500. This issue
brings some limitations to light. On the one hand, to estimate a fitting sliding
window size is difficult as a minimum of K ≤ W of LOF scores have to drop
below T to be detected as a cluster. Therefore, a high difference between K and
W leads to the detection of very small micro-clusters and a low difference leads
to a very low sensitivity against concept drifts. On the other hand, some test
execution have to be made to estimate a fitting threshold. In the experiments it
appears, that T is preferably set right below the average LOF. Additionally, the
current implementation poses the problem that concept drift detection is con-
strained to the control-flow dimension. To include other perspectives like time
or resources the approach has to be altered.

6 Evaluation on the Event Log of BPIC 2015

Fig. 5. Snapshot of five overlapping sliding
window states. Every trace ID (x-axis) is
assigned a LOF (y-axis). Background colors
represent assignments to micro-clusters.

As it is already introduced in Sec. 1,
we use data from the Business Process
Intelligence Challenge 20152. It con-
sists of building permit applications of
five Dutch municipalities with a total
number of 5649 traces. Due to the four
year period, in which changes were
regularly made to the rules and regu-
lations, an incremental concept drift is
expected in the data. For the first ex-
periment we use the first log with 1199
traces. Fig. 5 shows a snapshot of our
analysis in LOF-plot format, which
reveals the direction of the resulting
Gantt-Chart. One has to be aware,
that appearing traces in this plot are
already classified non-conforming to
both the reference and all other micro-cluster models. The colors show, that clus-
ters are aggregated, which are temporally overlapping. This implies the affinity
for each outlier aggregation to a different, successive cluster. Thus, incremental
drifts are detected as new micro-clusters are consecutively created.

2 https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1

https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
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Because BPIC 2015 is of high variability regarding the activity domain, traces
inherently posses a rather high distance in between. Increasing the sliding win-
dow size does not lead to the expected micro-clusters in the data already holding
an incremental drift but the loss in performance was relatively high. Thus, to
show the applicability to on small recurring drifts, we extend the log to serve
as a hybrid by repeatedly injecting data unrelated to the process. We randomly
use 5-25 traces with an inter-drift distance between 25-100 to alter the log. Fol-
lowing this strategy, we simulate a changed process based on real-world data
already comprising realistic noise and inherent drifts. The first 100 traces are
used to create the initial reference model. We discover this model with a high
dependency threshold to force many traces to be classified as non-conforming.
In this setup, we set the sliding window size to 60, the lower bound to 35 and
the offset to 0.005. The Gantt Chart in Fig. 6a marks all non-conforming traces,

(a) (b)

Fig. 6. Micro-cluster detection on hybrid log of BPIC 2015. The x-axis shows the
non-conforming trace identifiers in both figures and the y-axis shows the micro-cluster
affiliation (Fig. 6a) and the LOF (Fig. 6b).

which are aggregated to a micro-cluster and the aggregation is derived by high
difference between the LOF of each trace in Fig. 6b. By simulating the basic
process as a recurring drift in otherwise noisy data, we cluster the BPIC 2015
as one micro-cluster. An important aspect, which has to be considered is, that
real noisy traces in the basic process also get filtered. This leads to a more pure
version of the BPIC 2015 as a micro-cluster.

7 Conclusion

With our novel Dynamic Outlier Aggregation we detect concept drifts of dif-
ferent extent. Trace clustering of non-conforming traces is used as a first step.
Afterwards, we focus on the detection of recurring drifts as an example. Using
a sliding window approach allows us to discover changes of different magnitude
in the underlying process. Depending on the size of the traces these parameters
provide control over the results as we exchange processing time for accuracy.
In respect of a process like the spread of a disease, changes happen in a very
different time span. For example, we are constantly in need of knowledge about
mutating viruses like influenza or other more recent ones. Thus, the origin and
classification of a newly mutated kind is of high interest for the development of
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a vaccine. Furthermore, if the sliding window is chosen with an appropriate size,
and the underlying reference model consists of enough information of former
viruses, even a rapid and significant change of a virus, is detected.

In future works, we will look at the application of this approach to single
events instead of traces. The advantage of working on events instead of traces is
the processing of incomplete traces with a higher rate. This involves the output
of a micro-cluster probability for every emitted batch of connected events. In
addition, we will be working on an appropriate solution to re-integrate clustered
anomalies including a high amount of traces. This will also lead to great benefits
for real-world applications, since unknown deviations are thoroughly analyzed,
and the main process is purposefully extended.

References

1. Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based fitness in conformance
checking. In: 2011 Eleventh International Conference on Application of Concur-
rency to System Design. pp. 57–66 (June 2011)

2. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: Ordering points to
identify the clustering structure. In: Proceedings of the 1999 ACM SIGMOD Inter-
national Conference on Management of Data. p. 49–60. SIGMOD ’99, Association
for Computing Machinery, New York, NY, USA (1999)

3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: Identifying density-based
local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data. p. 93–104. SIGMOD ’00, Association for Computing
Machinery, New York, NY, USA (2000)

4. Burattin, A.: PLG2: multiperspective process randomization with online and of-
fline simulations. In: Azevedo, L., Cabanillas, C. (eds.) Proceedings of the BPM
Demo Track Co-located with the 14th International Conference on Business Pro-
cess Management, Rio de Janeiro, Brazil. vol. 1789, pp. 1–6 (2016)

5. Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering expressive process models
by clustering log traces. IEEE Transactions on Knowledge and Data Engineering
18(8), 1010–1027 (Aug 2006)

6. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and accurate business
process drift detection. pp. 406–422 (08 2015)

7. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.V.:
Detecting drift from event streams of unpredictable business processes. In: Comyn-
Wattiau, I., Tanaka, K., Song, I.Y., Yamamoto, S., Saeki, M. (eds.) Conceptual
Modeling. pp. 330–346. Springer International Publishing, Cham (2016)

8. Richter, F., Seidl, T.: Tesseract: Time-drifts in event streams using series of evolv-
ing rolling averages of completion times. Information Systems 84 (11 2018)

9. Richter, F., Zellner, L., Sontheim, J., Seidl, T.: Model-aware clustering of non-
conforming traces. In: Panetto, H., Debruyne, C., Hepp, M., Lewis, D., Ardagna,
C.A., Meersman, R. (eds.) On the Move to Meaningful Internet Systems: OTM
2019 Conferences. pp. 193–200. Springer International Publishing, Cham (2019)

10. Rozinat, A., Aalst, W.: Conformance checking of processes based on monitoring
real behavior. Information Systems 33, 64–95 (03 2008)

11. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Event stream-based pro-
cess discovery using abstract representations. Knowledge and Information Systems
54(2), 407–435 (Feb 2018)



OTOSO: Online Trace Ordering
for Structural Overviews

Florian Richter, Andrea Maldonado, Ludwig Zellner, and Thomas Seidl

Ludwig-Maximilians-Universität München, Munich, Germany
{richter, maldonado, zellner, seidl}@dbs.ifi.lmu.de

Abstract. Identifying structures in data is an essential step to enhance
insights and understand applications. Clusters and anomalies are the
basic building blocks for those structures and occur in various types.
Clusters vary in shape and density, while anomalies occur as single-point
outliers, contextual or collective anomalies. In online applications, clus-
ters even have a higher complexity. Besides static clusters, which rep-
resent a persistent structure throughout the whole data stream, many
clusters are dynamic, tend to drift and are only observable in certain time
frames. Here, we propose OTOSO, a monitoring tool based on OPTICS.
OTOSO is an anytime structure visualizer, that plots representations for
density-based trace clusters in process event streams. It identifies tem-
poral deviation clusters and visualizes them as a time-dependent graph.
Each node represents a cluster of traces by size and density. Edges yield
information about merging and splitting trace clusters. The aim is to
provide an on-demand overview over the temporal deviation structure
during the process execution. Not only for online applications, but also
for static datasets, our approach yields insights about temporally limited
occurrences of trace clusters, which are difficult to detect using a global
clustering approach.

Keywords: Trace Clustering · Visualization · Operational Support ·
Anytime Clustering.

1 Introduction

The ongoing digitalization of industries and social systems creates a strong de-
mand for analysis tools to transform data into useful insights. Especially early
warning systems for already known issues or still uncovered problems are highly
requested. However, without a thorough exploration of the data, those systems
cannot be developed, since we need to know what we are looking for beforehand.

In online applications, the time for analysis is always very precious and never
sufficient. Therefore, an in-depth analysis has to be postponed, as interesting
and promising aspects have been identified. A more shallow high-level analysis
is more suitable as a time-efficient first exploration.

In the field of clustering, DBSCAN[4] is a prominent technique for density-
based clustering. However, finding good parameters to generate results that
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leverage the data into a given story is very tedious. Restarting clustering al-
gorithms with arbitrary parameters is very different from output-driven exper-
imentation. Therefore, OPTICS[1] was proposed as an extension, that offers
a two-dimensional visualization for any multidimensional dataset. In OPTICS
plots, the structure of the data is abstracted and parameters for density-based
clusterings are visually determined.

In an online process mining application, we need to increase the abstraction
level even further. Anytime variants for DBSCAN and OPTICS have been pro-
posed in literature already. However, the structure of an online process is not
covered by observing an event stream and building an up-to-date process model.
The time perspective provides clusters with a further dimension of volatility.

In the context of processes, we differentiate between the major behavior,
the baseline process, and process variants with deviation behavior. During the
process execution, the baseline stays mostly static and rarely tends to shift its
behavior. In contrast, variants often traverse different lifecycles dynamically.
They emerge at certain points in time, merge with other variants, separate again
and disappear eventually. In some time intervals, variants can remain inactive
and reappear seasonally or randomly later.

In this work, we propose OTOSO, an on-demand temporal structure visu-
alization of event streams. It is based on OPTICS and developed to cope with
dynamic structure transformations. OTOSO collects trace data from an event
stream as temporal deviation signatures, generates temporary OPTICS plots
and aggregates their information into a graph plot. This plot shows relations
between baseline and variant clusters. In a quick analysis, structure changes are
identified visually. Each cluster is represented as a node of a specific size at a
point in time. Relations between clusters are indicated by edges between nodes.
The whole plot can then be interpreted as a map, that show the dynamic changes
of the process during the event stream.

2 Related Work

To the best of our knowledge, there is no direct competitor that proposes an
anytime structure overview for event streams. However, there are related meth-
ods that have to be mentioned here. There is a plethora of published techniques
regarding process discovery, conformance checking and clustering. Due to space
constraints, we only mention works that have a focus on temporal perspectives
or which work on event streams.

Event stream monitoring emerges as a required preprocessing step for any-
time analyses. Works in this field mainly prepare intermediate data for process
discovery[3, 9, 7] and conformance checking[2, 13]. These works propose methods
to analyze event streams, which is the more complex task in comparison to trace
stream analysis. The latter paradigm assumes that events are already grouped
into traces, which is mostly a difficult requirement. In many practical scenar-
ios, there is also a strong concurrency between cases. Cases can become inactive
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or are stopped without any further information. An approach based on event
streams has to come up with a heuristic to deal with the lack of information.

In the area of temporal anomaly detection, Rogge et al.[12] analyzed interim
times between events by applying kernel density estimation to identify outliers in
the temporal perspective. In [11], the authors identify such outliers of event pairs
online by using hashing for event collecting and applying z-scoring to define an
in-control area for unsuspicious event relations. In [10], this idea is leveraged on
the trace level to detect collective trace anomalies using density-based clustering
on temporal deviation signatures. We adapt the presented clustering technique
for OTOSO.

The area of event stream concept drift detection contains more established
works. In [6], Hassani elaborated the idea of [7] to detect work-flow-based con-
cept drifts using different structural metrics on process models. In [8], the authors
present a technique to change forecasting models according to changed environ-
ments due to concept drifts. However, we are not aware of any concept drift
detection approaches taking the temporal perspective into account.

3 Preliminaries

An event stream S : N→ N×A×N is a mapping from natural numbers to the
event domain. Each event e = (c, a, t) consists of an case identifier c ∈ N, an
activity label a ∈ A and a timestamp t ∈ N. For case identifiers from another
domain, there is typically a canonical translation into the natural numbers. The
same holds for the timestamps. In the following, we will not distinguish between
cases and case identifiers, as the context provides enough clarification.

Since OTOSO can also be applied to event logs, we define an event log as
a finite multiset of events. Although an event log is mostly grouped by case
identifiers, for OTOSO the log should be sorted by timestamp. Additional event
attributes like resources are ignored in this work, although they might enhance
the results in future works.

Next, we call tuples of two activities (a1, a2) ∈ A2 relations. A relation
(a1, a2) exists in a case c, if there are two events e1 = (c, a1, t1) and e2 = (c, a2, t2)
with t1 < t2. We canonically define the mean µ and variance σ of all time inter-
vals in a finite set of cases for a certain relation. Using z-scoring as follows we
account for the imbalance between all different relations and define the temporal
deviation signature as:

TDSc(a1, a2) =

{ |t2−t1|−µ(a1,a2)

σ(a1,a2)
, e1 = (c, a1, t1), e2 = (c, a2, t2) ∈ c

0 , otherwise

In case of multiple occurrences of a relation, the average z-score is used.
A distance is a positive-definite function, that is symmetrical and fulfills the
triangle inequality. In the following, we use the Euclidian distance due to its
popularity and will not go into detail about other functions in this work. For the
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clustering step, we require a measure of density. Density is defined by a number
of objects n in a certain area of radius ε. If an object, here a case represented by
its temporal deviation signature, contains at least MinPts many objects within
a neighborhood Nε(c) of radius ε, this case is a core object. All cases within
the neighborhood are at least border objects, if their neighborhood is not dense
enough to be core objects themselves. All remaining cases are noise.

One of the most popular density-based methods is DBSCAN[4]. It selects
objects and classifies them depending of their neighborhood as core, border or
noise points. For a more in-depth description, we point to the corresponding
work of Ester et al. A major drawback of DBSCAN is the difficulty to choose
an appropriate value for the neighborhood distance ε. To overcome this issue,
Ankerst et al. developed OPTICS[1]. Given MinPts, this method determines
for each object its core distance, the minimal distance needed such that the ε-
neighborhood contains MinPts many objects. Derived from the core distance,
the reachability distance between two objects is computed then. According to
this distance, the processing order is depending on the nearest neighbor that
has not been processed yet. This 2D reachability plot uses the ordering on the
x-axis and the reachability distance on the y-axis. Since dense object clusters in
the data space have low pairwise reachability distances, they are accumulated
in the plot and clusters are identified as troughs in the reachability plot. Using
a horizontal line as a density threshold, all troughs below this level represent
clusters using the height as the according ε-value.

4 OTOSO

OPTICS visualizes the cluster structure of a static dataset. However, especially
in process mining, process behaviors are dynamic and cluster structures are likely
to change. To visualize not only a snapshot in a particular time frame, but the
evolution of process variants and trace anomalies, we propose OTOSO, which
is briefly summarized a visual time series of trace cluster structures. OTOSO
consists of two phases. First, the event stream is observed and the necessary
statistics are collected. By using a hashing data structure, the data is provided
for the second module on-demand. At any point in time, the stored data can be
queried as input for OPTICS to produce the current temporal cluster structure
in the recent event stream. All those individual clustering snapshots are used to
iteratively plot the clustering overview for the whole event stream.

4.1 Monitoring Temporal Deviations

OTOSO uses an event stream as input. In contrast to trace streams, the events
have to be collected individually before case statistics can be extracted. A major
problem of stream input is that we can never be sure that a case is still active.
Therefore, we need an aging mechanism to discard old cases without the certainty
that they are canceled or just paused and will be continued later.
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Fig. 1. Example hash table with h = 7 and w = 4. Each observed stream event has
two potential rows to store it. Since the table is already full, either an event can be
appended to its corresponding trace or an old trace has to be discarded. Do not be
confused with the activity labels, since complete event information is stored.

We utilize Cuckoo-Hashing as it already provided a useful discarding tech-
nique for StrProM [7]. A hash table of height h is filled with case data, that is the
last timestamp, the case identifier and all observed events. Two hash functions
are applied on the case identifier to determine two potential hash table cells for
each case. Instead of storing the case data directly in the hash table, we store a
small and finite collection of cases in a cell. Technically, this width w of the table
is implemented using arrays. Thus, the decaying factor can be adjusted without
corrupting the operation complexity.

For each observed event, both hash functions are applied to identify all po-
tential storage cells. If the case is already stored, it is updated by adding the
event and setting the last-modified timestamp. In Fig. 1, the stream event in
the top left corner belongs to case c = 665. A potential storage option is in the
first hash table row. The case is already present in this row at the third position.
We can update this cell by appending the event and updating the timestamp
to t = 40. If the case has not been stored yet, we replace the case with the
stored case, that has the oldest last-modified timestamp. The replaced case is
the least recent one in this hash table cell. We try to insert it in the secondary
position. Either, the secondary position has empty space, or we replace it again
with the oldest case in this position. The procedure is recursively repeated until
the secondary position has only more current entries and we discard the current
item. Considering Fig. 1 again, the second stream event with c = 838 has storage
options for row 5 and 7. Neither holds data for this case already. Using the first
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option, we attempt to store this new case in the fifth row, depending on the
first of both hash functions. The oldest case here is case c = 893. We replace
it with the new case and try to re-insert c = 893. The timestamp t = 9 tends
to be already deprecated, however, since there are older entries in the table,
there might be a chance to discard it after a series of replacements. This would
be the case, if the alternative storage position is in row 1 or 3. Otherwise, the
already existing timestamps in the remaining rows are newer and case c = 893
is discarded.

With this strategy, the hash table is always a finite representation of the
recent cases, however some older behaviors potentially survive in the data struc-
ture since the swap operations regard the table only partially. Another drawback
is that events in the beginning of cases are represented excessively, as the chance
to be discarded is increased for longer cases. Alternatively, the length of the case
can be included in the discarding mechanism. Nevertheless, this gives older cases
an advantage to be kept stored, since smaller and recent cases are discarded. To
the best of our knowledge, a perfectly fair sampling for event streams is still an
open research topic, so we accept the drawbacks and discard by recency only.

Regarding hash functions, there are various ways to implement a set of two
functions. Most programming languages provide at least one built-in hash func-
tion. To derive a second one, it is mostly sufficient to reverse the case identifier
and use the same function again. Another strategy splits the identifier in two
chunks and uses the hash value for the first and for the second chunk to deter-
mine both positions. We did not perform an in-depth evaluation on this topic
here.

4.2 Structure Analysis

The hash table provides at most h·w many cases at any point in time t. The cases
do not have to be completed already. The complete hash table is processed to
extract the case data and to generate the z-scored temporal deviation signatures
for all cases, which is used as input for OPTICS to cluster the traces. The
output gives an impression on the recent temporal trace clustering structure.
For the stream structure overview, we extract all clusters depending on the
chosen density parameters (ε,MinPts). For each cluster C, we create a node at
position x = t and y =

∑
c∈C coreε,MinPts(c) which is the occurrence time and

aggregated cluster density. The size of each node is depending on the number of
contained cases in the cluster respectively the number of cluster elements that
are currently stored in the hash table.

In the basic variant, OTOSO connects cluster nodes if the distance between
cluster centers is below the distance threshold ∆TDS and the nodes occur in con-
secutive time slots. The extension connects cluster nodes of distant time slots.
This allows to identify temporally limited clusters that reoccur after a period of
inactivity. In Fig. 2, OTOSO is applied to an event stream producing OPTICS
plots for various timestamps. At a tickrate of 10k events, further intermediate
results are requested. For four of these intermediate queries, we show the OP-
TICS plots in the top row of the figure. For each OPTICS plot, a vertical slice
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Fig. 2. OTOSO applied to an event stream. Each slice correcponds to a point in time
and a hierarchy of clusterings at this timestamp.

in the OTOSO plot below is generated. Typically, a process produces one major
cluster containing cases that behave ordinary. These are the large spheres in each
slice. For the 50k mark, besides the major cluster, two variants of low density
are active. Both are related to previous queries, but disappear for the next two
queries. Solid lines indicate a strong similarity between clusters of consecutive
clusters. Dashed lines indicate similarity between slices over a larger timeframe.
Here, we only include lines connecting slices within a timeframe of 30k events.
In slice 60k, all variants disappear. In 70k, a small variant emerges. It has some
similarity with the major cluster in 50k, but no connection to the major cluster
in 60k. Hence, the temporal deviation profile first covered this deviation, but
the variant did not occur in the succeeding process window. Interestingly, the
small cluster in slice 80k grows slightly in size, but drastically in density. Re-
garding the solid line, we recognize a close similarity between both clusters, so
their behavior represented by the temporal deviation signature is also similar.

This visualization allows to detect different structural changes in an event
stream. Lifecycles of emerging and vanishing variants can be followed as illus-
trated before. The connections of a cluster node indicates, whether this variant
has disappeared or has been inactive for some time. If a node emerges with-
out initial connection, the corresponding variant starts suddenly. Otherwise, a
connected new node hints towards a gradually emerging variant. These mecha-
nisms are related to types of concept drift, however it is difficult to clearly label
the effects according to sudden, gradual and incremental drifts due to the com-
plexity of an event stream. Many activities and therefore activity relations are
included in the temporal deviation profile. Nevertheless, the OTOSO plot gives
an overview over the whole structure. A sudden drift, for instance, will likely
affect a small number of traces and will maybe only affect some activities. The
abstraction level of the visualization is to high to register concept drifts with a
high confidence, except they appear as large-scale effects.
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5 Evaluation

In the following, we evaluate the correlation between the size of the hash table
and the currency of the collected event data. Afterwards, we show the benefits
of applying OTOSO in comparison to using density-based clustering on the data
as a static data chunk. Finally, we build a stream of a sequence of event logs
to show the capability to detect the transitions between dissimilar event stream
sections. We uploaded OTOSO into a GitHub project1, thereby the experiments
can be reproduced.

5.1 Datasets

Working with pure synthetic datasets causes some issues concerning the de-
tection simplicity of anomalies or clusters in the data. We need datasets that
are realistic, because synthetic datasets allow too much freedom and often are
unfairly beneficial to the method‘s evaluation. Therefore, we utilize the BPI chal-
lenge datasets from 20152 and 20173, in the following abbreviated as BPIC15 and
BPIC17. BPIC15 contains data of building permit applications over four years in
five Dutch municipalities. Five partitions show the process of each municipality
individually. Each sublog contains about a thousand cases. The challenge of this
dataset lays in its about 400 activities and its resulting complexity from the large
number of potential relations. The publications regarding this challenge show,
that there is a high similarity between sublog 1, 2 and 5 while sublog 3 and 4
represent a slightly different behavior. In BPIC17, a loan application process of
a Dutch financial institute over one year is logged. The offer log contains only a
subset of 24 offer related activities. 128985 events are recorded in 42995 cases.
Due to its larger size, we are able to simulate an online observation of the whole
fiscal year.

5.2 Hash Table Size

We use BPIC17 to investigate the influence of the hash table size on the currency
of the data. Each event log is transformed into an event stream. Observing
the stream event by event, each recent event is inserted into the hash table.
Every 1000 events, we determine the average time difference to the current event
timestamp. In Fig. 3, we show the results. Starting with a small hash table, which
only contains 1000 cases, we compare three different dimensions for the table.
In the first case, a table of height 10 with 100 buckets in each position is used.
The second hash table has height 100 and width 10, while the third is a one-
dimensional table of height 1000. The average recency is below 10 days. Towards
the end, no new cases are starting, so no old cases are discarded and the table
gets slightly outdated.

1 https://github.com/Skarvir/OTOSO
2 https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
3 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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Fig. 3. Avg. recency and standard deviation is given for nine Cuckoo hash tables with
different dimensions as height× width.

The second plot shows three hash tables of size 5000 having analogous changes
regarding their dimensions. Due to the higher capacity, more cases can be stored
and the table contains more obsolete items. Storing more items leads to a more
stable clustering and following techniques are affected by noise or short-term
outliers. There is no clear method to determine the best recency and the corre-
sponding table size, since this is completely depending on the user-defined time
window and the arrival frequency of events and cases. Finally, the application
is also an important factor, since the detection of point-wise anomalies benefits
from higher currency while the detection of long-term structures requires data
with high stability. However, the important point we want to highlight is the
advantage of using a two-dimensional hash table. The width allows shorter re-
hash cycles, which is already shown in [5, 7]. The new insight here is the greater
recency for small numbers of buckets in each position. Already in the second
plot, but much clearer in the third one with a hash table of size 10000, the one-
dimensional hash table has a delay of about 40 days, while both variants with
few buckets have smaller temporal shifts. The difference between using 10 or
100 buckets is rather marginal. Therefore, we recommend using small numbers
of buckets, since the iteration over a large list of buckets is more time-consuming
than rehashing at another position.

5.3 Static Clustering vs. Dynamic Clustering

The BPIC17 dataset contains a significant cluster with deviating temporal be-
havior, that contains accepted offers with a delay in its execution. In Fig. 4a, we
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(a) OPTICS plot for BPIC17. (b) KDE for BPIC17.

(c) OTOSO plot for the event stream of BPIC17.

Fig. 4. OPTICS and OTOSO applied on the BPIC17 datalog. MinPts = 100 and
results are yielded each 10k events.

show the result of OPTICS applied to the whole event log using the temporal
deviation signatures as a representation. Using a neighborhood size of 0.5, two
major clusters are yielded. The largest one contains the majority of cases and
represents the baseline of this process. The second largest one is shown in OP-
TICS as a thinner and deep trough on the right side. Since this method yields
a static overview over the temporal clustering structure, we would assume that
the cluster is omnipresent during the complete event stream.

In Fig. 4c, the final OTOSO plot is given. After all events in the stream
have been processed, the clusters are nodes with radii according to the number
of contained cases. The height is determined by their density. Lines indicate
a strong similarity between consecutive clusters. Thus, by following a line we
observe the lifecycle of a specific cluster.

In the beginning, the results are not reliable. Many cases have been collected
only partially yet. As a rule of thumb, we recommend to neglect insights from
the first k cases if the hash table has size k = h ·w. Hence, starting with April, a
baseline of large clusters has been emerged and retains an almost constant size
for the remaining stream. More interesting is the other line above. It indicates
a much smaller cluster, that still has a high density. During August the cluster
vanishes but returns again in September. Instead, two new and dissimilar clusters
emerge for this short period and vanish afterwards again. To show what OTOSO
has highlighted there, we extract all cases contained in the previously mentioned
deviating cluster. This set of cases corresponds to the thin and deep trough in
Fig. 4a. For this cluster and also for the remaining cases, we plotted the starting
times as a kernel density estimation in Fig. 4b. Here, we observe a peak in
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Fig. 5. OTOSO applied to a five-fold concatenation of all five BPIC15 sublogs.
MinPts = 100 and an intermediate result is demanded every 10k events.

starting cases in August. The rising number of arriving cases, which do not
belong to the variant cluster, shifts more weight towards the baseline cluster
and the two new variants. The resulting loss in density for our previous variant
cluster leads to its disappearance for one observation tick. While it is possible to
detect such effects with static methods, this analysis is quite tedious. Besides,
we already knew what we were looking for. OTOSO highlights this anomaly
during the online observation of the event stream. In applications, that require
short reaction times, observing the OTOSO visualization provides a very quick
indication for an abnormal behavior.

5.4 OTOSO on Event Stream with Concept Drifts

Finally, we use the BPIC15 dataset to how concept drifts affect the structural
overview. The dataset is quite small, so we concatenate all five sublogs into one
larger event log. Further, we concatenated this event log 5 times with itself to
create an even larger log with five segments or 25 sublogs. This event log is then
transformed into an event stream.

In Fig. 5, the OTOSO plot is given after processing the event stream. As
discussed before, we neglect the results from the first two segments of the stream.
After 500k events have been processed, the hash table is filled sufficiently and the
structure of the data starts to appear. The red lines indicate the border points
when a sublog ends and a new one starts. Especially in the last two segments,
there is a significant similarity in BPIC15 between sublog 1, 2 and 5 and also
between 3 and 4. The black similarity line indicates this relation. There is a
much sparser and small cluster above. We do not have expert knowledge to verify
or explain its meaning. On the one hand, it is possible to neglect it due to its
sparsity. On the other hand, this cluster exists in all sublogs and it shows a strong
similarity. In reality, we would recommend a thorough examination, but due to
the lack of expert knowledge, we have to dispense with further speculations.

6 Conclusion

In a world of continuously emerging digitalization, it is very important to get
preliminary insights early and with a high level of abstraction. OTOSO provides
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an online overview over structures in an event stream. Emerging or vanishing
clusters are visually identified and lifecycles of those structures are tracked.

Although some structural dimensions are monitored like density, size and
similarity of clusters, process data contains more information, which can be
used to augment the structural overview plot. Also, the plot depends on suitable
user-defined parameters. Estimating good parameters is a very difficult task.
Thus, and because a data stream cannot be replayed, it is beneficial to enable
on-demand parameter adaptations while results are visualized.
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Abstract. Performance mining from event logs is a central task in man-
aging and optimizing business processes. Established analysis techniques
work with a single timestamp per event only. However, when available,
time interval information enables proper analysis of the duration of indi-
vidual activities as well as the overall execution runtime. Our novel ap-
proach, performance skyline, considers extended events, including start
and end timestamps in log files, aiming at the discovery of events that
are crucial to the overall duration of real process executions. As first
contribution, our method gains a geometrical process representation for
traces with interval events by using interval-based methods from se-
quence pattern mining and performance analysis. Secondly, we introduce
the performance skyline, which discovers dominating events considering
a given heuristic in this case, event duration. As a third contribution, we
propose three techniques for statistical analysis of performance skylines
and process trace sets, enabling more accurate process discovery, confor-
mance checking, and process enhancement. Experiments on real event
logs demonstrate that our contributions are highly suitable for detecting
and analyzing the dominant events of a process.

Keywords: interval events · performance analysis · process mining ·
dominant duration path · skyline operator

1 Introduction
To plan a process optimally, prevent mistakes as well as to answer questions
about its performance, we need to know the process. The more substantial the
knowledge, the better informed decisions users can take about their plan of ac-
tion. Over a century ago Gantt charts [1] were introduced to schedule work ac-
cording to resources in the manufacture industry. Since then data-centric process
mining models aid to understand constantly changing processes by considering
both, their prescription and the posterior description of run instances, in multi-
ple fields. Often certain tasks in a process last long, without the user knowing
whether that duration is expected or not. By taking performance indicators of
the time dimension, such as the lead-, service- and waiting time into account,
performance analysis examines event data over time [2].

? Supported by Munich Center for Machine Learning
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This analysis enables businesses to discover performance patterns, optimize pro-
cesses as well as to identify and prevent mistakes in them. In many cases, analyz-
ing processes that contain big amounts of events often includes computational
and visual overhead for the user, specially when only a subset of them might be
interesting to asses the user’s question. Furthermore including additional perfor-
mance information for more substantial knowledge may worsen the visual charge.
To alleviate this, we select a subset of events that may be specially interesting
using the skyline operator [3], considering that events of dominant duration are
crucial to process performance, and moreover optimization, resources usage and
task prioritization.
Consider the following example: After a vacation visit to your favorite city, you
write a review about the hotel you stayed in. This review is added to a platform’s
collection, from which hotel reputation companies forward customer feedback to
hotels. Broadly speaking, this process ingests customer reviews from multiple
sources, does multiple transformations, aggregates them and stores the result at
a given location to provide hotels with an accurate rating. Since ratings may
strongly influence guests booking decisions, an up-to-date result is essential to
a host’s reputation in the hospitality market. If all events of this process are
executed sequentially, they all directly contribute to the overall duration of the
process. For this reason it is often shorten by executing events parallely. Knowing
events inter dependencies, service- and waiting times is advantageous to choose
which activities should run in parallel. Independent events or events series of
similar length can be run in parallel to make the process more efficient. Improv-
ing a process that already utilizes parallel event executions requires performance
analysis of previously ran instances on a activity level. Focusing and speeding up
activities that last considerably longer than others might have a higher impact
on the overall duration than doing so on the ones that already perform rela-
tively well on the same trace. Thus identifying these activities is key, specially
for traces with a high amount of events and high service time deviation. Our
performance skyline approach highlights events that dominate others in some
given metric on one trace, in this occasion the metric is the service duration.
The next section, presents state-of-the art methods to analyze process perfor-
mance as the performance spectrum miner and the critical path method. Subse-
quently, Section 3 presents interval events, the skyline operator and the geometric
interval representation. These concepts form the basis of our methods. Section 4
and Section 5 introduces our contributions: The geometrical process representa-
tion, the performance skyline and three statistical analysis techniques. Following
then, Section 6 demonstrates how our approaches work beyond theory by exper-
imenting with them on real process logs from TrustYou GmbH, a German Guest
Feedback and Hotel Reputation Software company. Lastly Section 7 closes list-
ing achievements and further expansion possibilities as future work on this topic.
Code and real log data for replicating our experiments are available on the open
source project [https://github.com/andreamalhera/performanceskyline].
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2 Related Work

Performance models regard temporal aspects of processes. The performance
spectrum miner [2] maps all observed flows between activities together regard-
ing their performance over time. Bringing a temporal perspective into process
analysis, performance spectrum enables reliable pattern recognition for batch-
ing behavior. Nevertheless, using only one timestamp the performance spectrum
forces models to overlook some aspects like waiting time, actual event duration
and actual trace duration i.a. service time. Not extracting this knowledge re-
stricts models and pattern detection methods derived from it. Other models,
as for example PROM’s dotted chart [4], use two-dimensional space projections
with start time in the horizontal axis and case ids in the vertical axis to describe
processes. Nevertheless it is also limited by using a single timestamp. Event
intervals [5] have proven useful to extract insights about the idle periods of pro-
cesses even from events of a single timestamp, but are limited by the assumption
that all tasks occur sequentially.

When logs provide additional time interval information, performance insight
may be mined using e.g. interval events. Heuristics miner for time intervals
[6, 7] uses interval events to mine the dependency relations among activities in
a process more precisely. Similarly to transactional events [8] with transaction
types like start and complete, interval events have already been defined by others
[2,6,7,9,10], but slightly differently than in this paper. In the first one instance
of an activity, which starts and ends, is described as two transactional events of
the same activity. Other definitions of interval events implicitly assume that an
event ends exactly when the next one begins. Another kind of multi-timestamped
events are queue events in a single station queue log [11], which are used to
predict delays in service processes online and thus improve customer experience.
Being highly adapted to queues, queue events are not suitable to answer other
performance questions nor to handle more complex processes, containing non-
sequential activities as well. Disregarding complexity and in other cases provided
multiple timestamps, hinders to identify gaps between two events.

Flow analysis [12] is a family of control-flow model based techniques to estimate
the overall performance of a process given some knowledge about the perfor-
mance of its tasks. These promising techniques can be extended [13] to also
mine performance relations between a set of events and the overall process.
Moreover another possible extension could focus on finer granularity for the
dominating tasks regarding a given heuristics. Flow analysis is also restricted by
process complexity, working properly for control-flow based models and further-
more block-structured models [8] only. Even when one disposes of logs contain-
ing interval events, it is a challenge to find suitable ways to integrate additional
timestamps for events in a model including as much information as necessary but
without generating an visual overload. Comparably the non-control-flow based
model, multi-channel performance spectrum for predictive monitoring, [10] clas-
sifies cases using multiple performance-related dimensions, yet intra-case features
of individual cases remain undiscovered due to its relatively coarse granularity
and inter-case design.
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The critical path method (CPM) [12, 14–16] also filters interesting points from
a process. The critical path comprehends the longest series of dependent events
required from start to end, which add up to the overall trace duration [16]. Ap-
plying the CPM, identifies the critical path in petri-nets and precedence network
process models [17] by noting estimated/early and late, start time and end time
for each activity. Broadly this methods demonstrates how combining state-of-
the-art process mining with other approaches results in suitable opportunities.
Even though, real processes often present deviation in their duration. Since this
approach only considers constant duration of activities across traces and focuses
on precedence rather than process performance, analysis could be enriched by
performance mining and statistical inspection of time deviating events.

3 Preliminaries

3.1 Interval Events

A process instance can be split into events. An event e = (c, a, t) ∈ N×A× N
is as an tuple consisting of case id c, an activity id a, and a timestamp t. If
any two events contain the same case id, they belong to the same trace. A
trace is an instance of a process, containing multiple events. An interval event
e = (c, a, t+, t−) ∈ N×A×N×N is as an tuple consisting of case id c, an activity
id a, a start timestamp t+ and an end timestamp t−. The duration of an event
ei its duration can be computed as (πt−(ei)−πt+(ei)), where πk(ei) is the value
for key k in event ei.

3.2 Skyline Operator

In the field of database queries, the Skyline Operator [3] filters out a set of
interesting points from a potentially large set of data points. Whether or not a
point is interesting depends on metrics given by the user and if a point is not
dominated by any other. It can be used for example to find interesting hotel
matches, meaning all hotels that are not worse than any other hotel in nearness
to the beach and price. We call the line connecting the set of dominating points
of interest: the dominant path. To the best of our knowledge skyline operators
have not been used in the field of process mining before. Mostly because often
control-flow models are used to analyze a process. For the purpose of performance
analysis in processes we consider the dominant duration path of a trace, which
comprehends the series of events, which last the longest in a trace or process
from start to end and add up to the overall trace duration, similar to dominant
points of interest presented in [3]. Consider the following example: A trace is
composed of two events, A and B, both starting at t1. Additionally, A ends at
t3, and B ends at t2 with t3 > t2. Thus, the overall duration of the trace is
(t3− t1) and only A is part of the dominant path. Consequently, to decrease the
process duration based on this trace, event A needs to be sped up. Decreasing
the duration of only event B would not improve the overall performance, it is not
part of the dominant path and its duration (t2−t1) is lower than (t3−t1). For our
approach the skyline operator was implemented using Allen’s interval terms [18]:
The performance skyline includes all events without during relationship to any
other event in the same trace.
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3.3 Geometric interval representation

Fig. 1. Schematic representation of
four example intervals depicted in the
geometric interval representation with
start time and end time as axes. Ad.
[19].

In a geometric interval representation [20]
temporal intervals are projected to points
in a two-dimensional space, as in Fig. 1.
At the top of both subfigures of Fig. 1, a
schematic representation of a series con-
taining 4 events A, B, C and D is de-
picted. Below it events are projected as
points in a two-dimensional space. Using
start and end time as axes. E.g. event A
starts at t1 and finishes at t3; event B
starts at t2 and finishes at t7; event C
starts at t4 and ends at t5; and event D
starts at t6 and finishes at t7, lasting for
(t7 − t6) time units.

4 Performance Models for
Interval Events

4.1 Geometrical Process
Representation

Process interval events as defined previ-
ously in Section 3.1 contain temporal intervals, thus can be visualized in the
geometric interval representation. Figure 2 describes an example trace, which
entails four events similar to Fig. 1 with their corresponding start; end times-
tamps and a different activity each. EventsA,B, C, andD are connected through
a line marking they correspond to the same trace. Event B lasts the longest in
this trace, since it is furthest away from the zero-duration diagonal. In contrast,
the event with activity A appears to have the lowest duration. Events on the
same vertical, start at the same time; those sharing one horizontal position end
at the same time and if a line passing through two events is parallel to the
zero-duration diagonal, they last the same.

4.2 Performance Skyline

The performance skyline ρc of a trace σc is the largest sub sequence of events
ρc = (e1, · · · , ei . . . , ej , . . . , en), where ρc ⊆ σc, and πt−(ei) ≤ πt−(ej) for all
1 ≤ i ≤ j ≤ n. Additionally, because a trace of interval events is ordered based
on the start timestamps πt+(ei) ≤ πt+(ej) ⇔ i ≤ j. For the reason that events
in the performance skyline in the case of start time and end time as axis are
those which directly contribute to the overall duration of a process at any given
point, they are equivalent to the set of events on the dominant path, previously
presented in Section 3. If ei ∈ ρc, there is no other event, which starts before
πt+(ei) and ends after πt−(ei). The performance skyline of the trace in Fig. 2 is
depicted in Fig. 3. In this example ρT1

= {A,B,D} compose the performance
skyline. C does not belong to the performance skyline, because even though
{C,B} ∈ σT1 and πt−(C) = t5 ≤ t7 = πt−(B), also πt+(C) = t4 � t2 = πt+(B).
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Fig. 2. Schematic representation of one
example trace with four activities as in-
tervals in [19]

Fig. 3. Performance skyline for example
trace T1 in Fig. 2. Ad. [19].

Fig. 4. Real log snippet from industry process
with 390 event points of 30 activities, with corre-
sponding point colors, from 13 traces represented
by different line colors. Horizontal axis shows start-
ing times within the first 01:06hrs and vertical axis
shows ending times between 00:05hrs-02:00hrs.

To understand a process we
analyze a representative set of
traces. To include and com-
pare events from several traces
of the same process with each
other, these are aligned to the
left by subtracting the start
time value π+

t (e1) to all times-
tamps π+

t (ei), π
−
t (ei) for all

depicted events in the same
trace. This way for every trace
ρc the first aligned event e′1
starts at π+

t (e′1) = π+
t (e1) −

π+
t (e1) = 0 and ends at
π−t (e′1) = π−t (e1)−π+

t (e1). Any
other aligned event e′i starts
and ends relatively to it, com-
puted π+

t (e′i) = π+
t (ei)−π+

t (e1)
and π−t (e′i) = π−t (ei) − π+

t (e1)
correspondingly. Thus events
that usually start at a certain
time after the whole process starts are easier to compare with each other. From
here on in this paper, events in all presented traces are aligned.

Figure 4 shows a sample of a real log containing 390 events describing 30 ac-
tivities on 13 traces of a process. Points in similar positions and same color
represent similar activities. Detected patterns between traces identifies behavior
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that could be expected from future traces of the same process. In this case sim-
ilarities between traces can be observed in the peak often on the last event on
most traces depicted as a blue point. Even so, contemplating all events of several
traces simultaneously challenges recognizably in the visualization and burdens
performance with computational overhead. Selecting only a subset of interesting
events, e.g. those on the dominant path, to form a baseline of expected behavior
for a trace set eases its comparison between traces as well as with future ones.
For this purpose statistical analysis techniques will be introduced next.

5 Statistical Analysis Techniques
Methods in this section generalize the process analysis by considering multi-
ple traces in the same performance skyline model and furthermore depicting
stochastic summaries of these traces in the plot. Results visualized in this sec-
tion originate from real logs.

5.1 Average Trace Skyline
The average trace σ̄ = {ēa1 , . . . , ēai , . . . , ēan} of a process trace set is the result-
ing trace of averaging all events start and end times for each activity on the trace
set, i.e. for every activity the start time results in π+

t (ēai) = 1
m

∑m
j=1 π

+
t (ej) and

the end time in π−t (ēai) = 1
m

∑m
j=1 π

−
t (ej), where πa(ej) = ai. An average trace

is suitable as a comparable expectation for inquires that involve all activities of
a trace set. It eases the view to gain representative knowledge about all activities
start and end times as well as the relationships between consecutive activities.
Figure 5 shows the average trace of the depicted trace set in Fig. 4. Comparing
the form of the average trace to the trace set’s, e.g. peaks in the 4th and last
activities of the average trace with the ones of similar color in the trace set, a
common behavior of the underlying process is revealed.
Moreover combining the average trace and the performance skyline in the av-
erage trace skyline results in a description of a representative dominant path
for multiple traces of a process. For further details on the dominant path, see
Section 3. The average trace skyline of a process is the performance skyline of
the average trace. An average trace skyline is suitable to evaluate performance
expectations for a trace set because it facilitates gaining knowledge about activ-
ities that are often part of the dominant path and their relations to each other.
Figure 6 shows the average trace skyline of the trace set in Fig. 4, which is the
performance skyline of the trace in Fig. 5. This average trace skyline highlights
five out of thirty activities, which are part of the dominant path. With this in-
formation, the user can focus on those sparing them of unnecessary visual and
computational overhead.
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Fig. 5. Average trace from Fig. 4 with 30
activities. Horizontal axis shows starting
times within the first 01:06hrs and vertical
axis shows ending times between 00:05hrs-
02:00hrs.

Fig. 6. Performance skyline with five ac-
tivities on the dominant path marked
by line. Horizontal axis shows starting
times within the first 01:06hrs and vertical
axis shows ending times between 00:05hrs-
02:00hrs.

5.2 Average Skyline Trace

Fig. 7. Average skyline trace with 30
activities. Horizontal axis shows starting
times within the first 01:06hrs and vertical
axis shows ending times between 00:05hrs-
02:00hrs.

The average skyline trace ρ̄ =
{ē1, . . . , ēi, . . . , ēn} of a process is the
resulting skyline from averaging ac-
tivities in performance skylines of
all traces. π+

t (ēai) = 1
m

∑m
j=1 π

+
t (ej)

and the end time in π−t (ēai) =
1
m

∑m
j=1 π

−
t (ej), where πa(ej) = ai

and ej ∈ ρk, with ρk being a per-
formance skyline from a trace in the
trace set. An average skyline trace is
suitable to consider performance as-
pects for a given trace set, because it
offers knowledge about activities that
might be part of any trace’s dominant
path, here dominant duration path,
and their relations to each other. Con-
sequently it is more inclusive regard-
ing what activities to include than the
average trace skyline. Figure 7 shows
the average of the performance sky-
lines of traces in Fig. 4. This average
trace skyline highlights seventeen out

of thirty activities, more than the average trace skyline in Fig. 6. With this
information, the user can focus on duration dominant activities for any of the
traces. This is useful in case traces contain a diverse set of duration dominant
activities between them.
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5.3 Expected Skyline Activity Set
Having computed performance skylines of a process trace set RΣ = {ρ1, . . . , ρj ,
. . . , ρn}, the expected skyline activity set RA of that process is the set of
activities that have a probability of appearance on performance skylines that is
equal or higher than a given threshold tA. The appearance probability for an
activity ak is computed as follows:

P (πa(ei) = ak) =
|πa(ei) = ak|
|ei ∈ ρj |

, where ei ∈ ρi

Furthermore tak ≤ P (πa(ei) = ak) ⇒ ak ∈ RΣ . After computing appearance
probabilities, an expected threshold value shall be chosen to define the ex-
pected skyline activity set of the presented process. The higher the chosen
threshold value, the fewer activities will be part of the expected skyline ac-
tivity set. Analogously the lower the chosen threshold value, the more activities
will be part of the expected skyline activity set. An expected skyline activity
set is suitable to analyze performance of a process across events and traces;
as well as provide estimation and knowledge about deviation of events in a
process dominant path. Fig. 8 shows a bar chart, where each bar represents
one of seventeen activities in the data set and their length corresponding ap-
pearance probabilities in RΣ . Choosing e.g. tA = 60% results in |RΣ | = 4,
containing following activities: UpdateCrawlStartTask, SplitCrawlInputTask,
DumpTask(target filename=review 2yold)(chunk=prep)(sql filename=re-

view) and ConvertDumpTask(filename=review 2017 3)(chunk=prep)(sql -

filename=review).

Fig. 8. Performance skyline activity set with corresponding probabilities of activity
belonging to the performance skyline.

6 Discussion
Considering that performance skyline explicitly includes multiple traces, it offers
a suitable method for performance analysis and thus provides the user to take
more informed scheduling and planing decisions than the one offered by com-
bining critical path method and process discovery models [17]. Furthermore in-
troduced interval events bearing multiple timestamps extend performance spec-
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trum [2] analysis techniques by including bi-dimensional information about re-
lations between events within one trace or process while still offering a slim
visualization. This way both time stamps can be used to take waiting times and
events’ duration into consideration.

The experimental dataset comprehends three months of logs for a process called
daily at TrustYou GmbH, a German Guest Feedback and Hotel Reputation
Software company. Broadly explained this process ingests customer reviews from
multiple sources, does multiple transformations, aggregates them and stores the
result at a given location. Being a data process, only computing resources are
involved and thus control-flow deviations such as order of activities execution, do
not vary without showing performance deviations on interdependent activities
as well. The data collection compounds 62,074 interval events spread among 50
traces. It contains 261 different values for activity id. A trace has on average
1238 events. Most activities appear mostly once in a trace, except for six of
them which correspond to a few hundred events.

Additionally taking only a subset of dominant activities of interest into account
to describe a whole process reduces computational time an eases the search for
potential improvement and answers to performance questions that might only
concern a certain metric. For example finding events of dominant duration is
useful when searching long lasting single activities that can be optimized while
also regarding their order of execution and parallelization, which might be in-
flexible due to their inter-dependencies. For the experiment trace set an average
of 5, 22% of its events are part of the performance skyline. In order to include the
performance knowledge of multiple traces at once, statistical analysis techniques
select duration dominant activities that concern any, most or some of the traces.
Different techniques serve multiple purposes and data and show advantages to
solve various matters: First, the average trace skyline includes only activities
that belong to the dominant path. These are highly suited for comparing the av-
erage behavior of activities with each other. With this information independent
non-dominant events can be paralleled to duration dominant events and thus
performance of the whole process can be optimized. Nevertheless being very ex-
clusive with average duration activities, which means that if there is an activity
A, which due to high performance variance often appears on the performance
skyline for some traces, but which is on average dominated by another activity
B. Activity A will not be part of the average trace skyline. Furthermore, groups
of traces that have different sets of activities on their skyline might be represen-
tative, and conforming, without appearing most often. For this reason the order
of steps, averaging and computing a skyline, for a trace set leads to different
expectation skylines. Second, the average skyline trace includes every activity
on any skyline in the set to the average skyline trace. Even if this technique
is advantageous to compare all duration dominant activities, it can produce an
expectation skyline trace that is significantly sensitive to outliers because it in-
cludes activities that might only be part of a skyline computed from some traces
or even the average trace. Lastly, as a trade off between only including most fre-
quent dominant path’s activities and all activities from any dominant path disre-
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garding their relevance, an expected skyline activity set provides estimation and
knowledge about performance deviation of events in a process dominant path,
which can be used e.g. to identify trace anomalies. All of our presented statisti-
cal analysis techniques enable more informed decisions taking, e.g. how to best
schedule events, without overflowing the visualization. Furthermore as a rather
data-driven opposed to control-flow based approach, our performance skyline
yields flow analysis [12] like results for mining non-block-structured models.

7 Conclusion and Future Work
With our new approach of performance skyline we introduce a novel approach for
the performance mining of events containing multiple timestamps. Combining
interval based sequence pattern mining and process mining techniques facilitates
more accurate process discovery by integrating additional performance knowl-
edge across traces and events. Applying statistical analysis techniques on the
performance skyline enrich dominant path analysis with probabilistic perfor-
mance knowledge enabling more complete conformance checking, detecting and
discerning patterns, and thus adapting processes to be faster and more resource-
ful. Results from applying these methods to the real data set for a company
exemplifies how combining performance mining and sequence pattern mining
techniques is most suitable to identify and analyze the dominant path in a pro-
cess model using a trace set containing interval events. Future work involves
further experiments with variations on implementation of the skyline operator,
alignment, and skylines on other dominant features besides duration, as waiting
time, or even non-time related aspects as memory usage. Moreover investigation
of inferring models from streaming interval events as well as general research for
suitability solving tasks in process discovery, conformance checking, and process
enhancement could be expanded:
– Broader process discovery: identify loops and choices in the performance

skyline aggregations, extending the model by adding more information or
enriching further the visualization of already present items, researching more
variations of this model, as adding a third dimension plotting information
about resources, dependencies, further timestamps and case id.

– Conformance checking for recognition and prediction tasks: Anomaly de-
tection on trace - activity and event level, drift recognition, and more specif-
ically predictive process monitoring for interval events, using e.g. skyline
expectation maximization [21] for performance prediction on event level.

– Process enhancement: recognizing bottlenecks, or using detected proba-
bilistic pattern knowledge for optimal networks queuing and resource allo-
cation efficiently.
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