
Alignment Approximation for Process Trees

Daniel Schuster1, Sebastiaan van Zelst1,2, and Wil M. P. van der Aalst1,2

1 Fraunhofer Institute for Applied Information Technology FIT, Germany
{daniel.schuster,sebastiaan.van.zelst}@fit.fraunhofer.de

2 RWTH Aachen University, Germany
wvdaalst@pads.rwth-aachen.de

Abstract. Comparing observed behavior (event data generated during
process executions) with modeled behavior (process models), is an essen-
tial step in process mining analyses. Alignments are the de-facto standard
technique for calculating conformance checking statistics. However, the
calculation of alignments is computationally complex since a shortest
path problem must be solved on a state space which grows non-linearly
with the size of the model and the observed behavior, leading to the
well-known state space explosion problem. In this paper, we present a
novel framework to approximate alignments on process trees by exploit-
ing their hierarchical structure. Process trees are an important process
model formalism used by state-of-the-art process mining techniques such
as the inductive mining approaches. Our approach exploits structural
properties of a given process tree and splits the alignment computation
problem into smaller sub-problems. Finally, sub-results are composed to
obtain an alignment. Our experiments show that our approach provides
a good balance between accuracy and computation time.

Keywords: Process mining · Conformance checking · Approximation.

1 Introduction

Conformance checking is a key research area within process mining [1]. The
comparison of observed process behavior with reference process models is of cru-
cial importance in process mining use cases. Nowadays, alignments [2] are the
de-facto standard technique to compute conformance checking statistics. How-
ever, the computation of alignments is complex since a shortest path problem
must be solved on a non-linear state space composed of the reference model and
the observed process behavior. This is known as the state space explosion prob-
lem [3]. Hence, various approximation techniques have been introduced. Most
techniques focus on decomposing Petri nets or reducing the number of align-
ments to be calculated when several need to be calculated for the same process
model [4–8].

In this paper, we focus on a specific class of process models, namely pro-
cess trees (also called block-structured process models), which are an important
process model formalism that represent a subclass of sound Workflow nets [9].
For instance, various state-of-the-art process discovery algorithms return process

2 D. Schuster et al.

trees [9–11]. In this paper, we introduce an alignment approximation approach
for process trees that consists of two main phases. First, our approach splits
the problem of alignments into smaller sub-problems along the tree hierarchy.
Thereby, we exploit the hierarchical structure of process trees and their seman-
tics. Moreover, the definition of sub-problems is based on a gray-box view on the
corresponding subtrees since we use a simplified/abstract view on the subtrees to
recursively define the sub-problems along the tree hierarchy. Such sub-problems
can then be solved individually and in parallel. Secondly, we recursively compose
an alignment from the sub-results for the given process tree and observed pro-
cess behavior. Our experiments show that our approach provides a good balance
between accuracy and computation effort.

The remainder is structured as follows. In Section 2, we present related work.
In Section 3, we present preliminaries. In Section 4, we present the formal frame-
work of our approach. In Section 5, we introduce our alignment approximation
approach. In Section 6, we present an evaluation. Section 7 concludes the paper.

2 Related Work

In this section, we present related work regarding alignment computation and
approximation. For a general overview of conformance checking, we refer to [3].

Alignments have been introduced in [2]. In [12] it was shown that the com-
putation is reducible to a shortest path problem and the solution of the problem
using the A* algorithm is presented. In [13], the authors present an improved
heuristic that is used in the shortest path search. In [14], an alignment approxi-
mation approach based on approximating the shortest path is presented.

A generic approach to decompose Petri nets into multiple sub-nets is in-
troduced in [15]. Further, the application of such decomposition to alignment
computation is presented. In contrast to our approach, the technique does not
return an alignment. Instead, only partial alignments are calculated, which are
used, for example, to approximate an overall fitness value. In [4], an approach
to calculate alignments based on Petri net decomposition [15] is presented that
additionally guarantees optimal fitness values and optionally returns an align-
ment. Comparing both decomposition techniques with our approach, we do not
calculate sub-nets because we simply use the given hierarchical structure of a
process tree. Moreover, our approach always returns a valid alignment.

In [5], an approach is presented that approximates alignments for an event log
by reducing the number of alignments being calculated based on event log sam-
pling. Another technique based on event log sampling is presented in [8] where
the authors explicitly approximate conformance results, e.g., fitness, rather than
alignments. In contrast to our proposed approach, alignments are not returned.
In [6] the authors present an approximation approach that explicitly focuses on
approximating multiple optimal alignments. Finally, in [7], the authors present
a technique to reduce a given process model and an event log s.t. the original
behavior of both is preserved as much as possible. In contrast, the proposed
approach in this paper does not modify the given process model and event log.

Alignment Approximation for Process Trees 3

Table 1: Example of an event log from an order process
Event-id Case-id Activity name Timestamp · · ·
· · · · · · · · · · · · · · ·
200 13 create order (c) 2020-01-02 15:29 · · ·
201 27 receive payment (r) 2020-01-02 15:44 · · ·
202 43 dispatch order (d) 2020-01-02 16:29 · · ·
203 13 pack order (p) 2020-01-02 19:12 · · ·
· · · · · · · · · · · · · · ·

3 Preliminaries

We denote the power set of a given set X by P(X). A multi-set over a set X
allows multiple appearances of the same element. We denote the universe of
multi-sets for a set X by B(X) and the set of all sequences over X as X∗, e.g.,
〈a, b, b〉∈{a, b, c}∗. For a given sequence σ, we denote its length by |σ|. We denote
the empty sequence by 〈〉. We denote the set of all possible permutations for given
σ∈X∗ by P(σ)⊆X∗. Given two sequences σ and σ′, we denote the concatenation
of these two sequences by σ·σ′. We extend the · operator to sets of sequences,
i.e., let S1, S2⊆X∗ then S1·S2={σ1·σ2 |σ1∈S1∧σ2∈S2}. For traces σ, σ′, the set
of all interleaved sequences is denoted by σ�σ′, e.g., 〈a, b〉�〈c〉={〈a, b, c〉, 〈a, c, b〉,
〈c, a, b〉}. We extend the � operator to sets of sequences. Let S1, S2⊆X∗, S1�S2

denotes the set of interleaved sequences, i.e., S1�S2=
⋃
σ1∈S1,σ2∈S2

σ1�σ2.
For σ∈X∗ andX ′⊆X, we recursively define the projection function σ↓X′ :X

∗→
(X ′)∗ with: 〈〉↓X′=〈〉,

(
〈x〉·σ

)
↓X′

=〈x〉·σ↓X′ if x∈X ′ and (〈x〉·σ)↓X′=σ↓X′ else.

Let t=(x1, . . . , xn)∈X1× . . .×Xn be an n-tuple over n sets. We define projec-
tion functions that extract a specific element of t, i.e., π1(t)=x1, . . . , πn(t)=xn,
e.g., π2 ((a, b, c)) =b. Analogously, given a sequence of length m with n-tuples
σ=〈(x11, . . . , x1n), . . . , (xm1 , . . . , x

m
n)〉, we define π∗1(σ)=〈x11, . . . , xm1 〉, . . . , π∗n(σ)=

〈x1n, . . . , xmn 〉. For instance, π∗2
(
〈(a, b), (a, c), (b, a)〉

)
=〈b, c, a〉.

3.1 Event Logs

Process executions leave event data in information systems. An event describes
the execution of an activity for a particular case/process instance. Consider
Table 1 for an example of an event log where each event contains the executed
activity, a timestamp, a case-id and potentially further attributes. Since, in this
paper, we are only interested in the sequence of activities executed, we define an
event log as a multi-set of sequences. Such sequence is also referred to as a trace.

Definition 1 (Event log). Let A be the universe of activities. L∈B(A∗) is an
event log.

3.2 Process Trees

Next, we define the syntax and semantics of process trees.

4 D. Schuster et al.

→
n0

	

n1.1

×
n2.1

→
n3.1

a

n4.1

b

n4.2 ∧
n3.2

c

n4.3

d

n4.4

τ

n2.2 ∧
n1.2

e

n2.3

a

n2.4

T1=4T0 (n1.1) T2=4T0 (n1.2)

Fig. 1: Process tree T0=
(
{no, . . . , n4.4},

{
(n0, n1.1), . . . , (n3.2, n4.4)

}
, λ, n0

)
with

λ(n0)=→, . . . , λ(n4.4)=d

Definition 2 (Process Tree Syntax). Let A be the universe of activities
and τ /∈A. Let

⊕
={→,×,∧,	} be the set of process tree operators. We define

a process tree T=(V,E, λ, r) consisting of a totally ordered set of nodes V , a set
of edges E, a labeling function λ:V→A∪{τ}∪

⊕
and a root node r∈V .

–
(
{n}, {}, λ, n

)
with λ(n)∈A∪{τ} is a process tree

– given k>1 process trees T1=(V1, E1, λ1, r1), . . . , Tk=(Vk, Ek, λk, rk), T=(V,
E, λ, r) is a process tree s.t.:
• V=V1∪ . . .∪Vk∪{r} (assume r/∈V1∪ . . .∪Vk)
• E=E1∪ . . .∪Ek∪

{
(r, r1), . . . , (r, rk)

}
• λ(x)=λj(x) ∀j∈{1, . . . , k}∀x∈Vj , λ(r)∈{→,∧,×}

– given two process trees T1=(V1, E1, λ1, r1) and T2=(V2, E2, λ2, r2), T=(V,E,
λ, r) is a process tree s.t.:
• V=V1∪V2∪{r} (assume r/∈V1∪V2)
• E=E1∪E2∪

{
(r, r1), (r, r2)

}
• λ(x)=λ1(x) if x∈V1, λ(x)=λ2(x) if x∈V2, λ(r)= 	

In Figure 1, we depict an example process tree T0 that can alternatively be
represented textually due to the totally ordered node set, i.e., T0=̂→((×(→(a, b),
∧(c, d)), τ),∧(e, a)). We denote the universe of process trees by T . The degree
d indicates the number of edges connected to a node. We distinguish between
incoming d+ and outgoing edges d−, e.g., d+(n2.1)=1 and d−(n2.1)=2. For a tree
T=(V,E, λ, r), we denote its leaf nodes by TL={v∈V |d−(v)=0}. The child func-
tion cT :V→V ∗ returns a sequence of child nodes according to the order of V ,
i.e., cT (v)=〈v1, . . . , vj〉 s.t. (v, v1), . . . , (v, vj)∈E. For instance, cT (n1.1)=〈n2.1,
n2.2〉. For T=(V,E, λ, r) and a node v∈V , 4T (v) returns the corresponding tree
T ′ s.t. v is the root node, i.e., T ′=(V ′, E′, λ′, v). Consider T0, 4T0(n1.1)=T1 as
highlighted in Figure 1. For process tree T∈T , we denote its height by h(T)∈N.

Definition 3 (Process Tree Semantics). For given T=(V,E, λ, r)∈T , we
define its language L(T)⊆A∗.
– if λ(r)=a∈A, L(T)={〈a〉}
– if λ(r)=τ , L(T)={〈〉}
– if λ(r)∈{→,×,∧} with cT (r)=〈v1, . . . , vk〉
• with λ(r)=→, L(T)=L(4T (v1))· . . . ·L(4T (vk))
• with λ(r)=∧, L(T)=L(4T (v1))� . . . �L(4T (vk))

Alignment Approximation for Process Trees 5

trace part a b � � c f � �

model part
n4.1

λ(n4.1)=a
n4.2

λ(n4.2)=b
n2.2

λ(n2.2)=τ
n4.4

λ(n4.4)=d
n4.3

λ(n4.3)=c
� n2.4

λ(n2.4)=a
n2.3

λ(n2.3)=e

Fig. 2: Optimal alignment γ=
〈
(a, n4.1), . . . , (�, n2.3)

〉
for 〈a, b, c, f〉 and T0

• with λ(r)=×, L(T)=L(4T (v1))∪ . . .∪L(4T (vk))
– if λ(r)=	 with cT (r)=〈v1, v2〉, L(T)={σ1·σ′1·σ2·σ′2·. . .·σm | m≥1∧ ∀1≤i≤m(

σi∈L(4T (v1))
)
∧ ∀1≤i≤m−1

(
σ′i∈L(4T (v2))

)
}

In this paper, we assume binary process trees as input for our approach, i.e,
every node has two or none child nodes, e.g., T0. Note that every process tree
can be easily converted into a language equivalent binary process tree [9].

3.3 Alignments

Alignments [12] map observed behavior onto modeled behavior specified by pro-
cess models. Figure 2 visualizes an alignment for the trace 〈a, b, c, f〉 and T0
(Figure 1). The first row corresponds to the given trace ignoring the skip sym-
bol �. The second row (ignoring �) corresponds to a sequence of leaf nodes
s.t. the corresponding sequence of labels (ignoring τ) is in the language of the
process tree, i.e., 〈a, b, d, c, a, e〉∈L(T0). Each column represents an alignment
move. The first two are synchronous moves since the activity and the leaf node
label are equal. The third and fourth are model moves because � is in the log
part. Moreover, the third is an invisible model move since the leaf node label is
τ and the fourth is a visible model move since the label represents an activity.
Visible model moves indicate that an activity should have taken place w.r.t. the
model. The sixth is a log move since the trace part contains �. Log moves in-
dicate observed behavior that should not occur w.r.t. the model. Note that we
alternatively write γ=̂

〈
(a, a), . . . , (�, e)

〉
using their labels instead of leaf nodes.

Definition 4 (Alignment). Let A be the universe of activities, σ∈A∗ be a trace
and T=(V,E, λ, r)∈T be a process tree with leaf nodes TL. Note that �, τ /∈A.
A sequence γ∈

(
(A∪{�})×(TL∪{�})

)∗
with length n=|γ| is an alignment iff:

1. σ=π∗1(γ)↓A

2.
〈
λ
(
π2
(
γ (1)

))
, . . . , λ

(
π2
(
γ(n)

))〉
↓A
∈L(T)

3. (�,�)/∈γ and (a, v)/∈γ ∀a∈A ∀v∈TL
(
a 6=λ(v)

)
For a given process tree and a trace, many alignments exist. Thus, costs are

assigned to alignment moves. In this paper, we assume the standard cost function.
Synchronous and invisible model moves are assigned cost 0, other moves are
assigned cost 1. An alignment with minimal costs is called optimal. For a process
tree T and a trace σ, we denote the set of all possible alignments by Γ (σ, T).
In this paper, we assume a function α that returns for given T∈T and σ∈A∗
an optimal alignment, i.e., α(σ, T)∈Γ (σ, T). Since process trees can be easily
converted into Petri nets [1] and the computation of alignments for a Petri net
was shown to be reducible to a shortest path problem [12], such function exists.

6 D. Schuster et al.

4 Formal Framework

In this section, we present a general framework that serves as the basis for
the proposed approach. The core idea is to recursively divide the problem of
alignment calculation into multiple sub-problems along the tree hierarchy. Sub-
sequently, we recursively compose partial sub-results to an alignment.

Given a trace and tree, we recursively split the trace into sub-traces and
assign these to subtrees along the tree hierarchy. During splitting/assigning, we
regard the semantics of the current root node’s operator. We recursively split
until we can no longer split, e.g., we hit a leaf node. Once we stop splitting, we
calculate optimal alignments for the defined sub-traces on the assigned subtrees,
i.e., we obtain sub-alignments. Next, we recursively compose the sub-alignments
to a single alignment for the parent subtree. Thereby, we consider the semantics
of the current root process tree operator. Finally, we obtain a valid, but not
necessarily optimal, alignment for the initial given tree and trace since we regard
the semantics of the process tree during splitting/assigning and composing.

Formally, we can express the splitting/assigning as a function. Given a trace
σ∈A∗ and T=(V,E, λ, r)∈T with subtrees T1 and T2, ψ splits the trace σ into
k sub-traces σ1, . . . , σk and assigns each sub-trace to either T1 or T2.

ψ(σ, T)∈
{〈

(σ1, Ti1), . . . , (σk, Tik)
〉
| i1, . . . , ik∈{1, 2} ∧ σ1· . . . ·σk∈P(σ)

}
(1)

We call a splitting/assignment valid if the following additional conditions are
satisfied depending on the process tree operator:

– if λ(r)=×: k=1
– if λ(r)=→: k=2 ∧ σ1·σ2=σ
– if λ(r)=∧: k=2
– if λ(r)=	: k∈{1, 3, 5, . . . }∧σ1· . . . ·σk=σ ∧ i1=1∧∀j∈{1, . . . , k−1}

(
(ij=1⇒

ij+1=2) ∧ (ij=2⇒ij+1=1)
)

Secondly, the calculated sub-alignments are recursively composed to an align-
ment for the respective parent tree. Assume a tree T∈T with sub-trees T1 and
T2, a trace σ∈A∗, a valid splitting/assignment ψ(σ, T) , and a sequence of k sub-
alignments 〈γ1, . . . , γk〉 s.t. γj∈Γ (σj , Tij) with (σj , Tij)=ψ(σ, T)(j)∀j∈{1, . . . , k}.
The function ω composes an alignment for T and σ from the given sub-alignments.

ω(σ, T, 〈γ1, . . . , γk〉)∈{γ | γ∈Γ (σ, T) ∧ γ1· . . . ·γk∈P(γ)} (2)

By utilizing the definition of process tree semantics, it is easy to show that, given
a valid splitting/assignment, such alignment γ returned by ω always exists.

The overall, recursive approach is sketched in Algorithm 1. For a given tree T
and trace σ, we create a valid splitting/assignment (line 4). Next, we recursively
call the algorithm on the determined sub-traces and subtrees (line 6). If given
thresholds for trace length (TL) or tree height (TH) are reached, we stop split-
ting and return an optimal alignment (line 2). Hence, for the sub-traces created,
we eventually obtain optimal sub-alignments, which we recursively compose to
an alignment for the parent tree (line 7). Finally, we obtain a valid, but not
necessarily optimal, alignment for T and σ.

Alignment Approximation for Process Trees 7

Algorithm 1: Approximate alignment
input: T=(V,E, λ, r)∈T , σ∈A∗, TL≥1, TH≥1
begin

1 if |σ|≤TL ∨ h(T)≤TH then
2 return α(σ, T); // optimal alignment

3 else
4 ψ(σ, T)=〈(σ1, Ti1

), . . . , (σk, Tik
)
〉
; // valid splitting

5 for (σj , Tij
)∈
〈
(σ1, Ti1

), . . . , (σk, Tik
)
〉
do

6 γj ←approx. alignment for σj and Tij
; // recursion

7 γ ← ω(σ, T, 〈γ1, . . . , γk〉); // composing
8 return γ;

→

T1 T2

σ=〈d, c, a, b, c, d | a, e〉

A(T1)={a, b, c, d} 〈〉/∈L(T1)

SA(T1)={a, c, d}
EA(T1)={b, c, d}

A(T2)={e, a} 〈〉/∈L(T1)

SA(T2)={e, a}
EA(T2)={e, a}

σ1=〈d, c, a, b, c, d〉 σ2=〈a, e〉

(a) Trace splitting and assignment

→

T1 T2

γ1=̂
d c a b c d
d c b b c d

γ2=̂
a e
a e

γ=̂
d c a b c d
d c b b c d

· a e
a e

(b) Alignment composition

Fig. 3: Overview of the two main actions of the approximation approach

5 Alignment Approximation Approach

Here, we describe our proposed approach, which is based on the formal frame-
work introduced. First, we present an overview. Subsequently, we present specific
strategies for splitting/assigning and composing for each process tree operator.

5.1 Overview

For splitting a trace and assigning sub-traces to subtrees many options exist.
Moreover, it is inefficient to try out all possible options. Hence, we use a heuristic
that guides the splitting/assigning. For each subtree, we calculate four character-
istics: the activity labels A, if the empty trace is in the subtree’s language, possi-
ble start-activities SA and end-activities EA of traces in the subtree’s language.
Thus, each subtree is a gray-box since only limited information is available.

Consider the trace to be aligned σ=〈d, c, a, b, c, d, a, e〉 and the two sub-
trees of T0 with corresponding characteristics depicted in Figure 3a. Since T0’s
root node is a sequence operator, we need to split σ once to obtain two sub-
traces according to the semantics. Thus, we have 9 potential splittings positions:
〈|1 d |2 c |3 a |4 b |5 c |6 d |7 a |8 e |9〉. If we split at position 1, we assign σ1=〈〉
to the first subtree T1 and the remaining trace σ2=σ to T2. Certainly, this is
not a good decision since we know that 〈〉/∈L(T1), the first activity of σ2 is not
a start activity of T2 and the activities b, c, d occurring in σ2 are not in T2.

8 D. Schuster et al.

Assume we split at position 7 (Figure 3a). Then we assign σ1=〈d, c, a, b, c, d〉
to T1. All activities in σ1 are contained in T1, σ1 starts with d∈SA(T1) and ends
with d∈EA(T1). Further, we obtain σ2=〈a, e〉 whose activities can be replayed
in T2, and start- and end-activities match, too. Hence, according to the gray-
box-view, splitting at position 7 is a good choice. Next, assume we receive two
alignments γ1 for T1, σ1 and γ2 for T2, σ2 (Figure 3b). Since T1 is executed before
T2, we concatenate the sub-alignments γ=γ1·γ2 and obtain an alignment for T0.

5.2 Calculation of Process Tree Characteristics

In this section, we formally define the computation of the four tree character-
istics for a given process tree T=(V,E, λ, r). We define the activity set A as a
function, i.e., A:T →P(A), with A(T)={λ(n) | n∈TL, λ(n)6=τ}. We recursively
define the possible start- and end-activities as a function, i.e., SA:T →P(A) and
EA:T →P(A). If T is not a leaf node, we refer to its two subtrees as T1 and T2.

SA(T)=

{λ(r)} if λ(r)∈A
∅ if λ(r)=τ

SA(T1) if λ(r)=→∧〈〉/∈L(T1)

SA(T1)∪SA(T2) if λ(r)=→∧〈〉∈L(T1)

SA(T1)∪SA(T2) if λ(r)∈{∧,×}
SA(T1) if λ(r)=	∧〈〉/∈L(T1)

SA(T1)∪SA(T2) if λ(r)=	∧〈〉∈L(T1)

EA(T)=

{λ(n)} if λ(r)∈A
∅ if λ(r)=τ

EA(T2) if λ(r)=→∧〈〉/∈L(T2)

EA(T1)∪EA(T2) if λ(r)=→∧〈〉∈L(T2)

EA(T1)∪EA(T2) if λ(r)∈{∧,×}
EA(T1) if λ(r)=	∧〈〉/∈L(T1)

EA(T1)∪EA(T2) if λ(r)=	∧〈〉∈L(T1)

The calculation whether the empty trace is accepted can also be done recursively.

– λ(r)=τ ⇒ 〈〉∈L(T) and λ(r)∈A ⇒ 〈〉/∈L(T)
– λ(r)∈{→,∧} ⇒ 〈〉∈L(T1) ∧ 〈〉∈L(T2)⇔ 〈〉∈L(T)
– λ(r)∈× ⇒ 〈〉∈L(T1) ∨ 〈〉∈L(T2)⇔ 〈〉∈L(T)
– λ(r)= 	⇒ 〈〉∈L(T1)⇔ 〈〉∈L(T)

5.3 Interpretation of Process Tree Characteristics

The decision where to split a trace and the assignment of sub-traces to subtrees is
based on the four characteristics per subtree and the process tree operator. Thus,
each subtree is a gray-box for the approximation approach since only limited
information is available. Subsequently, we explain how we interpret the subtree’s
characteristics and how we utilize them in the splitting/assigning decision.

Consider Figure 4 showing how the approximation approach assumes a given
subtree T behaves based on its four characteristics, i.e., A(T), SA(T), EA(T),
〈〉∈L(T). The most liberal interpretation I(T) of a subtree T can be considered
as a heuristic that guides the splitting/assigning. The interpretation I(T) de-
pends on two conditions, i.e., if 〈〉∈L(T) and whether there is an activity that is
both, a start- and end-activity, i.e., SA(T)∩EA(T)6=∅. Note that L(T)⊆L(I(T))
holds. Thus, the interpretation is an approximated view on the actual subtree.

In the next sections, we present for each tree operator a splitting/assigning
and composing strategy based on the presented subtree interpretation. All strate-
gies return a splitting per recursive call that minimizes the overall edit distance
between the sub-traces and the closest trace in the language of the interpretation

Alignment Approximation for Process Trees 9

→

N×
(
SA(T)

)
	

τ N×
(
A(T)

)
N×
(
EA(T)

)

(a) 〈〉/∈L(T) and SA(T)∩EA(T)=∅

×

→

N×
(
SA(T)

)
	

τ N×
(
A(T)

)
N×
(
EA(T)

)
N×
(
SA(T)∩EA(T)

)

(b) 〈〉/∈L(T) and SA(T)∩EA(T) 6=∅

×
→

N×
(
SA(T)

)
	

τ N×
(
A(T)

)
N×
(
EA(T)

)
τ

(c) 〈〉∈L(T) and SA(T)∩EA(T)=∅

×

→

N×
(
SA(T)

)
	

τ N×
(
A(T)

)
N×
(
EA(T)

)
N×
(
SA(T)

)
∩EA(T)

)
τ

(d) 〈〉∈L(T) and SA(T)∩EA(T) 6=∅

Fig. 4: Most liberal interpretation I(T) of the four characteristics of a process
tree T∈T . For a set X={x1, . . . , xn}, N×(X) represents the tree ×(x1, . . . , xn)

of the assigned subtrees. For σ1, σ2∈A∗, let l(σ1, σ2)∈N∪{0} be the Levenshtein
distance [16]. For given σ∈A∗ and T∈T , we calculate a valid splitting ψ(σ, T)=〈
(σ1, Ti1), . . . , (σj , Tik)

〉
w.r.t. Eq. (1) s.t. the sum depicted below is minimal.∑
j∈{1,...,k}

(
min

σ′∈I(Tij
)
l(σj , σ′)

)
(3)

In the upcoming sections, we assume a given trace σ=〈a1, . . . , an〉 and a
process tree T=(V,E, λ, r) with subtrees referred to as T1 and T2.

5.4 Approximating on Choice Operator

The choice operator is the most simple one since we just need to assign σ to one
of the subtrees according to the semantics, i.e., assigning σ either to T1 or T2.
We compute the edit distance of σ to the closest trace in I(T1) and in I(T2) and
assign σ to the subtree with smallest edit distance according to Eq. (3).

Composing an alignment for the choice operator is trivial. Assume we even-
tually get an alignment γ for the chosen subtree, we just return γ for T .

5.5 Approximating on Sequence Operator

When splitting on a sequence operator, we must assign a sub-trace to each
subtree according to the semantics. Hence, we calculate two sub-traces: 〈(σ1, T1),
(σ2, T2)〉 s.t. σ1·σ2=σ according to Eq. (3). The optimal splitting/assigning can
be defined as an optimization problem, i.e., Integer Linear Programming (ILP).

In general, for a trace with length n, n+1 possible splitting-positions exist:
〈|1 a1 |2 a2 |3 . . . |n an |n+1〉. Assume we split at position 1, this results in〈
(〈〉, T1), (σ, T2)

〉
, i.e., we assign 〈〉 to T1 and the original trace σ to T2.

10 D. Schuster et al.

Composing the alignment from sub-alignments is straightforward. In general,
we eventually obtain two alignments, i.e, 〈γ1, γ2〉, for T1 and T2. We compose
the alignment γ for T by concatenating the sub-alignments, i.e., γ=γ1·γ2.

5.6 Approximating on Parallel Operator

According to the semantics, we must define a sub-trace for each subtree, i.e.,
〈(T1, σ1), (T2, σ2)〉. In contrast to the sequence operator, σ1·σ2=σ does not gen-
erally hold. The splitting/assignment w.r.t. Eq. (3) can be defined as an ILP. In
general, each activity can be assigned to one of the subtrees independently.

For example, assume σ=〈c, a, d, c, b〉 and T =̂∧
(
→(a, b),	(c, d)

)
with subtree

T1=̂→(a, b) and T2=̂	(c, d). Below we assign the activities to subtrees.
〈 c, a, d, c, b 〉
T2 T1 T2 T2 T1

Based on the assignment, we create two sub-traces: σ1=〈a, b〉 and σ2=〈c, d, c〉.
Assume that γ1=̂〈(a, a), (b, b)〉 and γ2=̂〈(c, c), (d, d), (c, c)〉 are the two align-
ments eventually obtained. To compose an alignment for T , we have to consider
the assignment. Since the first activity c is assigned to T2, we extract the corre-
sponding alignment steps from γ1 until we have explained c. The next activity
in σ is an a assigned to T1. We extract the alignment moves from γ1 until we ex-
plained the a. We iteratively continue until all activities in σ are covered. Finally,
we obtain an alignment for T and σ, i.e., γ=̂

〈
(c, c), (a, a), (d, d), (c, c), (b, b)

〉
.

5.7 Approximating on Loop Operator

We calculate m∈{1, 3, 5, . . . } sub-traces that are assigned alternately to the two
subtrees: 〈(σ1, T1), (σ2, T2), (σ3, T1), . . . , (σm−1, T2), (σm, T1)〉 s.t. σ=σ1· . . . ·σm.
Thereby, σ1 and σm are always assigned to T1. Next, we visualize all possible
splitting positions for the given trace: 〈|1 a1 |2 |3 a2 |4 . . . |2n−1 an |2n〉. If we split
at each position, we obtain

〈(
〈〉, T1

)
,
(
〈a1〉, T2

)
,
(
〈〉, T1

)
, . . . ,

(
〈an〉, T2

)
,
(
〈〉, T1

)〉
.

The optimal splitting/assignment w.r.t Eq. (3) can be defined as an ILP.
Composing an alignment is similar to the sequence operator. In general, we

obtain m sub-alignments 〈γ1, . . . , γm〉, which we concatenate, i.e., γ=γ1· . . . ·γm.

6 Evaluation

This section presents an experimental evaluation of the proposed approach.
We implemented the proposed approach in PM4Py3, an open-source process

mining library. We conducted experiments on real event logs [17,18]. For each log,
we discovered a process tree with the Inductive Miner infrequent algorithm [10].

In Figures 5 and 6, we present the results. We observe that our approach is
on average always faster than the optimal alignment algorithm for all tested pa-
rameter settings. Moreover, we observe that our approach never underestimates

3 https://pm4py.fit.fraunhofer.de/

https://pm4py.fit.fraunhofer.de/

Alignment Approximation for Process Trees 11

5 10 15 20
trace length (TL)

5
10

15
20tre

e
he

ig
ht

 (T
H) 2.41 14.99 63.75 107.14

2.43 14.90 63.41 106.33
2.60 14.87 64.48 106.79
5.45 16.36 64.01 105.63

avg. computation time (s) optimal alignments: 301.77

20
40
60
80
100

(a) Avg. computation time (s)

5 10 15 20
trace length (TL)

5
10

15
20tre

e
he

ig
ht

 (T
H) 24.74 24.29 24.12 24.10

24.69 24.29 24.12 24.10
24.33 24.27 24.12 24.10
24.27 24.27 24.12 24.10

avg. alignment cost optimal alignments: 23.41

24.15
24.30
24.45
24.60

(b) Avg. alignment costs

Fig. 5: Results for [17], sample: 100 variants, tree height 24, avg. trace length 28

2 4 6 8
trace length (TL)

2
4

6
8

tre
e

he
ig

ht
 (T

H) 4.15 4.21 4.20 4.20
0.98 1.00 0.94 0.94
1.06 0.97 1.00 0.91
31.91 28.61 28.65 32.62

avg. computation time (s) optimal alignments: 181.39

6
12
18
24
30

(a) Avg. computation time (s)

2 4 6 8
trace length (TL)

2
4

6
8

tre
e

he
ig

ht
 (T

H) 61.87 61.87 61.87 61.87
61.86 61.86 61.86 61.86
61.78 61.78 61.78 61.78
61.40 61.40 61.40 61.40

avg. alignment cost optimal alignments: 61.11

61.44
61.52
61.60
61.68
61.76
61.84

(b) Avg. alignment costs

Fig. 6: Results for [18], sample: 100 variants, tree height 10, avg. trace length 65

the optimal alignment costs, as our approach returns a valid alignment. W.r.t.
optimization problems for optimal splittings/assignments, consider parameter
setting TH:5 and TL:5 in Figure 5. This parameter setting results in the high-
est splitting along the tree hierarchy and the computation time is the lowest
compared to the other settings. Thus, we conclude that solving optimization
problems for finding splittings/assignments is appropriate. In general, we ob-
serve a good balance between accuracy and computation time. We additionally
conducted experiments with a decomposition approach [15] (available in ProM4)
and compared the calculation time with the standard alignment implementation
(LP-based) [12] in ProM. Consider Table 2. We observe that the decomposition
approach does not yield a speed-up for [17] but for [18] we observe that the
decomposition approach is about 5 times faster. In comparison to Figure 6a,
however, our approach yields a much higher speed-up.

7 Conclusion

We introduced a novel approach to approximate alignments for process trees.
First, we recursively split a trace into sub-traces along the tree hierarchy based

4 http://www.promtools.org/

Table 2: Results for decomposition based alignments
Approach [17] (sample: 100 variants) [18] (sample: 100 variants)

decomposition [15] 25.22 s 20.96 s
standard [12] 1.51 s 103.22 s

http://www.promtools.org/

12 D. Schuster et al.

on a gray-box view on the respective subtrees. After splitting, we compute op-
timal sub-alignments. Finally, we recursively compose a valid alignment from
sub-alignments. Our experiments show that the approach provides a good bal-
ance between accuracy and calculation time. Apart from the specific approach
proposed, the contribution of this paper is the formal framework describing how
alignments can be approximated for process trees. Thus, many other strategies
besides the one presented are conceivable.

References

1. W. M. P. van der Aalst, Process Mining - Data Science in Action. Springer, 2016.
2. W. M. P. van der Aalst, A. Adriansyah, and B. F. van Dongen, “Replaying history

on process models for conformance checking and performance analysis,” Wiley
Interdiscip. Rev. Data Min. Knowl. Discov., vol. 2, no. 2, 2012.

3. J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich, Conformance Checking
- Relating Processes and Models. Springer, 2018.

4. W. L. J. Lee, H. M. W. Verbeek, J. Munoz-Gama, W. M. P. van der Aalst,
and M. Sepúlveda, “Recomposing conformance: Closing the circle on decomposed
alignment-based conformance checking in process mining,” Inf. Sci., vol. 466, 2018.

5. M. F. Sani, S. J. van Zelst, and W. M. P. van der Aalst, “Conformance check-
ing approximation using subset selection and edit distance,” in CAiSE 2020, ser.
LNCS, vol. 12127. Springer, 2020.

6. F. Taymouri and J. Carmona, “An evolutionary technique to approximate multiple
optimal alignments,” in BPM 2018, ser. LNCS, vol. 11080. Springer, 2018.

7. ——, “Model and event log reductions to boost the computation of alignments,”
in SIMPDA 2016, vol. 1757. CEUR-WS.org, 2016.

8. M. Bauer, H. van der Aa, and M. Weidlich, “Estimating process conformance by
trace sampling and result approximation,” in BPM 2019, ser. LNCS, vol. 11675.
Springer, 2019.

9. S. J. J. Leemans, “Robust process mining with guarantees,” Ph.D. dissertation,
Department of Mathematics and Computer Science, 2017.

10. S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering Block-
Structured Process Models from Event Logs Containing Infrequent Behaviour,” in
BPM Workshops 2013, ser. LNBIP, vol. 171. Springer, 2013.

11. D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst, “Incremental discovery
of hierarchical process models,” in RCIS 2020, ser. LNBIP, vol. 385. Springer,
2020.

12. A. Adriansyah, “Aligning Observed and Modeled Behavior,” Ph.D. dissertation,
Eindhoven University of Technology, 2014.

13. B. F. van Dongen, “Efficiently computing alignments - using the extended marking
equation,” in BPM 2018, ser. LNCS, vol. 11080. Springer, 2018.

14. B. F. van Dongen, J. Carmona, T. Chatain, and F. Taymouri, “Aligning mod-
eled and observed behavior: A compromise between computation complexity and
quality,” in CAiSE 2017, ser. LNCS, vol. 10253. Springer, 2017.

15. W. M. P. van der Aalst, “Decomposing Petri Nets for Process Mining: A Generic
Approach,” Distributed and Parallel Databases, no. 4, 2013.

16. V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966.

17. B. F. van Dongen, “BPI Challenge 2019. Dataset,” 2019.
18. B. F. van Dongen and F. Borchert, “BPI Challenge 2018. Dataset,” 2018.

Stochastic Process Discovery By Weight
Estimation

Adam Burke (�) , Sander J. J. Leemans , and Moe Thandar Wynn

Queensland University of Technology, Brisbane, Australia,
at.burke@qut.edu.au,s.leemans@qut.edu.au,m.wynn@qut.edu.au

Abstract. Many algorithms now exist for discovering process models
from event logs. These models usually describe a control flow and
are intended for use by people in analysing and improving real-world
organizational processes. The relative likelihood of choices made while
following a process (i.e., its stochastic behaviour) is highly relevant
information which few existing algorithms make available in their
automatically discovered models. This can be addressed by automatically
discovered stochastic process models.
We introduce a framework for automatic discovery of stochastic process
models, given a control-flow model and an event log. The framework
introduces an estimator which takes a Petri net model and an event
log as input, and outputs a Generalized Stochastic Petri net. We apply
the framework, adding six new weight estimators, and a method for
their evaluation. The algorithms have been implemented in the open-
source process mining framework ProM. Using stochastic conformance
measures, the resulting models have comparable conformance to existing
approaches and are shown to be calculated more efficiently.

Key words: Stochastic Petri nets, process mining, stochastic process
mining, stochastic process discovery

1 Introduction
The world abounds in information systems, generating data about the

processes they mediate, execute, or observe. Using this data to compute
and analyze process models is the concern of process mining [3], within the
field of Business Process Management (BPM). BPM studies the impact and
improvement of processes in organizations. Automatic process discovery is
one aspect of process mining concerned with finding a formal process model
computationally from an input event log.

To understand a process, we often want to know how likely an event is. If we
travel to work, a journey where our train reliably arrives on time is different from
one where the train sometimes breaks down, is sometimes replaced by a bus, or
is often so crowded that it’s quicker to ride a bike. A highly contagious disease
with rare side effects differs importantly from one difficult to transmit but with
severe side effects, even if observable symptoms are similar. Detecting fraud in
financial transactions depends on recognizing certain client actions happening
more frequently than usual. Existing process mining techniques already recognize

https://orcid.org/0000-0003-4407-2199
https://orcid.org/0000-0002-5201-7125
https://orcid.org/0000-0002-7205-8821
at.burke@qut.edu.au, s.leemans@qut.edu.au, m.wynn@qut.edu.au

2 Adam Burke et al.

this: where noise or probability is considered in creating control flows (e.g. [30,
19]), they acknowledge the importance of likelihood in process modeling. Better
stochastic representations and stochastic-aware techniques have been flagged as
a key research challenge for process mining [2].

Process discovery techniques have become quite sophisticated at determining
causal relationships between activities from event logs, and representing that
in process models. There are far fewer techniques for discovering relative
probabilities (discussed in Section 5). We introduce a framework in Section 3
which leverages this by allowing transformation of models with only control
flows into stochastic process models. This extends an existing stochastic
process discovery technique by Rogge-Solti et al (RSD) [25, 26], in two ways.
Firstly, it generalizes one estimation algorithm to a general class of weight
estimators. Secondly, it specializes the possible outputs from general probability
distributions to Generalized Stochastic Petri Nets (GSPNs) [4]. The framework
does not prescribe whether the estimation calculation is deterministic, uses
stochastic simulation, or other techniques, and our introduced estimators include
both deterministic and non-deterministic types.

We describe our approach as a form of Stochastic Process Discovery, as
it takes an event log input and produces a GSPN output. In decoupling
weight estimation from control flow discovery, the technique also shares some
features with process model enhancement for time and probability [3, p290].
Unlike enhancement techniques, estimators can potentially change control flows
when producing a stochastic process model. Stochastic process models have a
corresponding, emerging, set of stochastic process conformance measures [20, 21,
16]. Consequently, the algorithms and models presented here are evaluated, in
Section 4, as stochastic process discovery algorithms, using stochastic process
conformance measures. Evaluation, which also includes performance, is against
real-life event logs, multiple control flow discovery algorithms, and RSD [25].

In the next section, we introduce existing concepts. In Section 3, we
describe the weight estimation framework and instantiate it by introducing novel
estimators. In Section 4, the results of using the estimators on real-world event
logs are presented. Related work is reviewed in Section 5, and Section 6 concludes
the paper.

2 Preliminaries
Petri nets and Generalized Stochastic Petri Nets are well-established

formalisms for modelling processes and a number of good overviews exist [4,
8]. We use notations from the process mining literature [3, 21].

A Petri net is a tuple PN = (P, T, F,M0), where P is a finite set of places,
T is a finite set of transitions, and F : (P × T)→ (T × P) is a flow relation. A
marking is a multiset of places ⊆ P that indicate a state of the Petri net, with
M0 the initial marking. A transition is enabled if every incoming place contains a
token. A transition fires by changing the marking of the net to consume incoming
tokens and producing tokens for its outgoing transitions. For a node n ∈ P ∪ T ,
we define •n = {y | (y, x) ∈ F} and n• = {y | (x, y) ∈ F}.

Stochastic Process Discovery By Weight Estimation 3

A Generalized Stochastic Petri Net (GSPN) is a tuple (P, T, F,M0,W, Ti, Tt)
such that Ti ⊆ T , Tt ⊆ T and Ti ∩ Tt = ∅. Weight function W : T → R+

assigns each transition a weight. Ti is a set of immediate transitions. If multiple
transitions Te ⊆ Ti are enabled in a particular marking, the probability of a

transition t ∈ Ti firing is given by W (t)
Σt′∈Te

W (t′) . Tt is a set of timed transitions.

Immediate transitions take priority over timed transitions. A timed transition,
if enabled, fires according to an exponentially distributed wait time. Given a set
of enabled timed transitions Te ⊆ Tt, a particular transition t fires first with

probability W (t)
Σt′∈Te

W (t′) [4].

Event logs. A process consists of activities from the set A. A trace is a non-
empty sequence of activities, and an event log L is a finite multiset of traces
observing the underlying process. Partial function λ : T → A designates labels
for Petri net transitions that represent log activities. The number of traces in a
log L is denoted with |L|, while the the number of events is denoted with ||L||.

Control Flow Process Discovery. A process discovery algorithm for Petri Nets
is then defined by cfd : L→ (P, T, F,M0).

Sequence operations. A finite sequence over A of length n is a mapping σ ∈
{1..n} → A and denoted by σ = 〈a1, a2, ..., an〉 where ∀iai = σ(i). Concatenation
operator + appends one sequence to another such that 〈a1, ..., an〉+〈b1, ..., bm〉 =
〈a1, ...an, b1, ..., bm〉. The tail function is then tail(〈a〉+ σ) = σ.

Subsequence. Function ct returns the number of times a subsequence is

present in a sequence: ct(ς, σ) =

0 if σ = 〈〉
1 + ct(ς, tail(σ)) if σ = ς + x

ct(ς, tail(σ)) if σ 6= ς + x

Alignments. An alignment [1] represents paired paths between a log and a
model. That is, a move is a tuple where (a, t) represents a synchronous move
on activity a in a trace and a transition t in the model (with the same label:
λ(t) = a), (a,⊥) represents a log move, and (⊥, t) represents a model move. For
our purposes, we assume that a function γ is available taking a Petri net, a set
of final markings and an event log, and that γ returns a sequence of move tuples
that represent all moves necessary to align every trace in the log.

3 Stochastic Process Model Weight Estimation
In this section, we first introduce our framework to transform a Petri net

into a GSPN using an event log. Then, we introduce six estimators using the
framework, which we will illustrate using the running example shown in Figure 2.
Estimators are a large solution space with many potential algorithms. Our six
estimators are chosen to emphasize broad applicability of inputs, computational
tractability, using the implicit causal information in control flow models, and
reapplying established process mining concepts.

3.1 A Framework for GSPN Discovery

The framework defines functions which together transform an event log into
a GSPN, as shown in Figure 1.

4 Adam Burke et al.

A stochastic process discovery algorithm for GSPNs (mine spn) is a function
mine spn : L → (P, T, F,M0,W, Ti, Tt). Our framework considers functions
of the form mine spn = est(cfd(L), L). Functions est : L × (P, T, F,M0) →
(P, T, F,M0,W, Ti, Tt) are termed estimators.

Functions se : L× (P, T, F,M0)→ T ×R+ are simple weight estimators and
use the control flow of the input Petri net intact in the output Petri net, such
that for discovered control flow model cfd(L) = (Pd, Td, Fd,Md0),

∃pe∈estpe = (Pd, Td, Fd,Md0, se(L, (Pd, Td, Fd,Md0)), Td, ∅)

The estimators discussed next are of this simpler form.
Specific estimators may have further restrictions on their inputs, or provide

guarantees on their outputs. For example, estimators discussed below do not
distinguish transitions with duplicate labels. A challenge common to several
estimators is treatment of silent transitions, as those transitions in a discovered
model serve a structural role and do not directly represent an activity in the log.
Assigning such a transition a weight of zero in a stochastic net is equivalent to
deleting the transition, and all subsequent model paths. To avoid this impact,
default values are assigned to silent transitions where the calculation would
otherwise result in zero weights. In general, estimators make no distinction
between silent transitions and transitions without a corresponding activity in the
log. In the remainder of this section, we introduce several examples of estimators
that instantiate this framework.

3.2 Frequency Estimator

The first estimator, wfreq, straightforwardly uses how often each transition
t appeared in the event log L:

wfreq(L, t) = max(1, Σσ∈L ct(〈λ(t)〉, σ))

Silent transitions are assigned the arbitrary weight of 1, equivalent to a single
observation in the log. The complexity of this estimator is linear in the number
of events in the log. Figure 2c shows the results of this estimator on our running
example, e.g. wfreq(EL, b) = 15.

3.3 Activity-Pair Frequency Estimators

An Activity-Pair Estimator uses the frequency of pairs of successor activities
to better reflect the constraints of more general Petri nets. These are edge-
structured estimators, in that Petri net edges inform the weighting.

We first introduce some frequency definitions. The functions qI and qF
capture how often an activity appears as the first/last in a trace. The function
qP captures the frequency of activity pairs in the log, that is, where the two
given activities follow one another directly in the log:

Log
Control flow

Discovery
Petri net Estimator GSPN

discover estimate

Fig. 1: Our framework for GSPN Discovery.

Stochastic Process Discovery By Weight Estimation 5

[〈a, b, c, d〉5,

〈a, c, b, d〉4,

〈a, b, b, d〉2,
〈a, b, c, b, d〉]

(a) Log EL.

a

c

b

τ d

(b) Petri net EPN .

wfreq wlhpair wrhpair wpairscale wfork walign

a 12 12 12 1 11
49

12 12
b 15 8 7 35

49
8 14

c 10 4 5 1 1
49

4 10
11

9
d 12 12 12 1 11

49
11 6

13
12

τ 1 1 1 1 129
143

0

(c) Six example estimators.

Fig. 2: Running example of an event log and a Petri net, and the estimators.

qI(L, t) = |[〈λ(t), . . .〉 ∈ L]|
qF (L, t) = |[〈. . . , λ(t)〉 ∈ L]|

qP (L, s, t) = Σσ∈L ct(〈λ(s), λ(t)〉, σ)

There are both left-handed and right-handed variants of the Activity-
Pair estimator, depending on whether weights are informed by successor or
predecessor transitions, defined as:

wlhpair(L, t) = max(1, qI(L, t) + qF (L, t) +
∑

s∈•(•t)

qP (L, s, t))

wrhpair(L, t) = max(1, qI(L, t) + qF (L, t) +
∑

s∈(t•)•

qP (L, t, s))

There are no restrictions on input Petri nets and they can be calculated in
time O(||L|||F |), that is, the number of events times the number of model edges.

When using activity pair frequency data, two important types of path
through the model are neglected for any given trace: paths from the initial
place to the first transition, and the paths from the last transition to the final
place. Traces of length one are also invisible from this perspective. To account
for this, how often an activity appears as the initial or final activity in a trace is
also included in the weight estimation. Note that not all activity pairs occurring
in the log are used to calculate the resulting transition weights. For instance,
where a given Petri net represents two transitions a and b as concurrent, the
frequency of 〈a, b〉 will not be used. In our running example (see Figure 2c),
wlhpair(EL, c) = 4 and wrhpair(EL, c) = 5.

3.4 Mean-Scaled Activity-Pair Frequency Estimator

The previous estimators depend on the size of the log. Two logs with the
same traces in the same ratios will result in two models with two distinct
sets of weights, which challenges human analysis. Though comparison and
comprehensibility of stochastic process models appears not to have been
directly addressed in the literature, it is consistent with research that finds
“small variations between models can lead to significant differences in their
comprehensibility” [24] and the usability principle of minimizing user memory
load. The mean-scaled activity-pair estimator wpairscale mitigates this effect by

scaling weights by average transition frequency (||L|||T |) in the log L:

6 Adam Burke et al.

pairscale(L, T, t) =
qI(L, t) + qF (L, t) +

∑
s∈(t•)• qP (L, t, s)

||L||
|T |

wpairscale(L, (P, T, F,M0), t) =

{
pairscale(L, T, t) if pairscale(t) 6= 0

1 otherwise

One effect of defaulting after scaling is that silent or unrepresented transitions
are weighted more heavily, that is, the same as an activity of mean-frequency,
rather than the equivalent of an activity occurring once in the log. In our running
example of Figure 2c, ||L|| = 49, |T | = 5 and the numerator of pairscale is equal
to wrhpair for a, b, c and d. Then, for instance wpairscale of c is 10

49
5

= 1 1
49 .

3.5 Fork Distribution Estimator

The Fork Distribution Estimator wfork uses a two-stage approach: it first
assigns weights to each place in a Petri net using activity-pair frequencies.
Second, it distributes those weights to transitions according to the activity
frequency in the event log.

pw(L, p) =

{
|L| if p ∈M0

Σs∈•pΣt∈p•qP (L, s, t) otherwise

placeWeights(L, p) = max(1, pw(L, p))

wfork(L, (P, T, F,M0), t) = Σp∈•tplaceWeights(L, p)
wfreq(t)

Σp•
t′ wfreq(t

′)

This estimator only applies to Petri nets which have at least one place without
incoming edges, such as workflow nets [3, p81]. This is an edge-structured
estimator informed by the structure of the input net. The complexity is
O(||L|| |F |). The wfork estimator shares similarities with the Alpha algorithm [3,
p167], in that it treats a place as defining a neighbourhood of related activities
represented as transitions. In our example (Figure 2), let p1 be the top-
right place and p2 the bottom-right place. Then, pw(EL, p1) = qP (c, d) +
qP (τ, d) = 5, pw(EL, p2) = qP (τ, d) + qP (b, d) = 7, placeWeights(EL, p1) = 5,
placeWeights(EL, p2) = 7 and wfork of d = 5 12

12 + 7 12
13 = 11 6

13 .

3.6 Alignment Estimator

The estimator walign applies alignments [1] to estimate weights. To this end,
it counts the number of times a transition t appears either as a model move or
as a synchronous move in the alignments:

walign(L,PN,MF , t) = |[(x, t) ∈ γ(PN,MF , L)]|

This algorithm only applies to Petri nets with at least one final marking.
The time complexity is O(|T | |γ|) plus the time to compute γ. The alignment
estimator has similarities with RSD [25], which fits duration distributions to
aligned logs. In our example of Figure 2, the last trace of log EL does not
fit the model EPN , as b is executed a second time and c is executed. Thus,

Stochastic Process Discovery By Weight Estimation 7

Log Petri net GSPN

Fodina [10]
Inductive Miner [19]
Split Miner [7]
discover

wfreq

wlhpair

wrhpair

wpairscale

wfork

walign

estimate

RSD [25]

tEMSC [20]
Entropy Recall & Precision [21]

entity count
edge count
duration
measures

BPIC2013 closed
BPIC2013 incidents

BPIC2013 open
BPIC2018 control

BPIC2018 dept
BPIC2018 reference

SEPSIS

Fig. 3: Set-up of the evaluation.

alignments will (based on a cost function, or if that does not discriminate the
options an arbitrary choice) include a log move on either b or a log move on c.
If the alignments choose a b for a log move, then walign(EL,EPN,MF , b) = 14
and walign(EL,EPN,MF , τ) = 0. Alignments are not always deterministic, and
consequently neither is walign.

4 Implementation and Evaluation

4.1 Evaluation Design

The six estimators introduced in Section 3 were implemented in the ProM
framework [13]1. For our evaluation, a discovery algorithm was applied to an
event log. Where necessary, the result was converted to a Petri net. Each
estimator was invoked on the resulting Petri net, resulting in a GSPN. Finally,
the conformance of the resulting GSPN was measured against the original log.
For comparison, an existing stochastic discovery algorithm by Rogge-Solti et
al [25] (RSD) was also applied to the log. This direct discovery algorithm
also outputs GSPNs, and the same conformance measures were applied. The
implementation of this plugin in ProM 6.9 uses the Inductive Miner internally
as an initial control flow discovery step, which has been updated from the
gradient-descent procedure described in [25]. Algorithms, reference event logs
and conformance measures are summarized as Figure 3.

Measures include (1) Truncated Earth Movers’ Distance (tEMSC) [20]
provides a measure expressing the cost of transforming the distribution of
activity traces from one stochastic language into another. We use a minimum
probability mass parameter setting of 0.8 for feasibility. (2) Entropy Precision
and Recall [21], are stochastic conformance measures based on the entropy of
equivalent automata constructed from a given log or model. (3) Petri net entity
count (places and transitions) and (4) edge count are used as structural simplicity
measures, ensuring that conformance quality has not been achieved by sacrificing
model simplicity and comprehensibility. Entity and arc counts have existing uses
in process model evaluation [14, 17], and were preferred here over behavioural
simplicity measures [16], though these measures also have limitations, including
specificity to Petri nets, and insensitivity to the stochastic perspective of GSPNs.

1 Source code is accessible via https://github.com/adamburkegh/spd_we

https://github.com/adamburkegh/spd_we

8 Adam Burke et al.

The duration of a discovery process was also captured, and direct discovery times
are compared with combined runtimes for discovery and estimation.

The experiments were run on a Windows 10 machine with 2.3GHz CPU
and 50 Gb of memory allocated to each process on JDK 1.8.0 222. All logs
are publicly available at https://data.4tu.nl/. The full results for these
experiments are available in an accompanying technical report [11].

4.2 Results and Discussion

(a) tEMSC (b) entropy-recall (c) entropy-precision

Fig. 4: Results on BPIC 2018 Control log categorized by {estimator}-{control
flow algorithm}, plus RSD.

(a) tEMSC (b) entropy-recall (c) entropy-precision

Fig. 5: Results on BPIC 2018 Reference log.

The estimators produced different, relevant, stochastic models when applied
to a range of real-life logs. As seen in Figures 4 and 5, stochastic conformance for
these models was comparable, but not uniformly better, than existing techniques,
and was highly dependent on the discovery algorithm, and log.

The estimators combined well with the Inductive Miner and Split Miner
control discovery algorithms. Frequency-based estimators combined poorly with

https://data.4tu.nl/

Stochastic Process Discovery By Weight Estimation 9

Fig. 6: Run times for control flow discovery and weight estimation by event and
trace count. 12 hour time out for RSD [25] on sepsis log is excluded.

the Fodina discovery algorithm for some logs. This is at least partly due to
Petri net representational bias in the presented framework. Fodina outputs a
causal net, which was converted to a Petri net. The resulting Petri net includes
a large number of silent transitions, often intermediating between transitions
corresponding to activity pairs in the log. This can be seen distinctly in results
for BPIC 2018 reference log in Figure 5, where walign produces a stochastically
relevant model on the output of a Fodina input, but no other estimator does.
For Split Miner and Inductive Miner, though they use other representations
internally, the Petri net model produced used fewer silent transitions and were
less impacted by this property.

For the BPIC 2013 closed and incidents logs, Fodina returned a model
without an initial place, to which wfork, walign, tEMSC and Entropy-Recall
and Entropy-Precision conformance measures do not apply. For some algorithm-
estimator combinations, these conformance measures could not be calculated
due to soundness, time or memory constraints. Nevertheless, in these results it
is clear that tEMSC 0.8 is more sensitive to the stochastic perspective produced
by estimators than the Entropy Precision and Recall measures. Where RSD [25]
produced a model on which measures could be calculated, the resulting models
often conformed well to the logs, but not consistently better than the estimator-
produced models. There were a number of event logs where RSD returned no
model within the constraints of time (12 hour timeout) and machine memory, or
where conformance measures were unable to be calculated within time (5 hour
timeout) and memory constraints.

The run time of the estimators, which took never more than 10 seconds, was
always comparable or better than RSD, orders of magnitude better in some cases,
as shown in Figure 6. In the future, we aim to extend these experiments with
larger logs containing more traces, events, and activities. However, even though
our estimators returned results for each model and log combination quickly, the
conformance measures were the limiting factors in these experiments in terms

10 Adam Burke et al.

of time and memory, which indicates that future research should be directed
towards more efficient stochastic conformance checking techniques.

In summary, our new estimators, even the alignment-based walign, are able to
handle real-life event logs and outputs from existing discovery techniques much
faster than existing approaches. Depending on the applied discovery technique,
they can also achieve higher stochastic quality, providing alternatives to the
existing RSD discovery technique when analyzing control flow and stochastic
perspectives.

5 Related Work
Significant work exists on performance analysis using process mining and

Stochastic Petri Nets (SPNs) with pre-existing normative models. This includes
improving parameters from an input SPN [22, 29, 26], from models in UML
[9], and industrial case studies [26, 9]. These and other applications can benefit
directly from automatic discovery of stochastic models.

RSD [25] is a technique, with publicly available implementation, for
discovering Generally Distributed Transition Stochastic Petri Nets (GDT SPNs),
with some high level descriptions of techniques and algorithms preceding it [18,
15, 6]. RSD first discovers a control flow model in the form of a Petri net,
then performs a fitness calculation, and attempts to repair the model if fitness
is low. An alignment and replay calculation then informs the production of an
output GDT SPN. The distinction between control flow discovery and stochastic
perspectives is extended by our proposed framework to many possible weight
estimators. The post-control flow discovery steps in RSD are a weight estimator,
but not a simple estimator, in our terminology.

In [27, 28], queues are discovered in stochastic process mining using two
formalisms, Process Trees [28] and Queue-Enabling Colored Stochastic Petri
Nets [27]. The Process Tree approach is informed by statistics theory and uses
both Bayesian and Markov-Chain Monte-Carlo fitting.

Hidden Markov Models (HMMs) have seen some applications to stochastic
process discovery [12, 5]. For instance, [12] constructs HMMs for resource usage
using a variant of the Alpha algorithm [3, p167], an early process mining
algorithm with known weaknesses on real-world event data. [5] uses event log
data to prune unlikely paths from a HMM process model in the context of a
semi-automated stochastic process discovery procedure.

Declarative process models describe a process in terms of constraints on
behaviour. This contrasts with control-flow based process models, such as Petri
nets used in our framework, which describe permitted behaviour. Techniques for
automatic process discovery of probabilistic declarative models also exist [23].
Transforming the significant differences between the forms of control-flow and
declarative models, and evaluating the result for stochastic conformance, put
rigorous comparison beyond the scope of this paper.

6 Conclusion
The likelihood of an event is important information in understanding many

real-world processes. Automatically discovered stochastic process models may

Stochastic Process Discovery By Weight Estimation 11

then help analyze and improve organizations. In this paper we presented a
framework for discovery of General Stochastic Petri Nets (GSPNs) from logs. The
framework leverages existing control flow discovery algorithms, and introduces
estimators which transform discovered Petri nets into GSPNs. We introduced six
estimators; their implementation is publicly available, and evaluated against real-
life logs using multiple stochastic conformance measures. The evaluation used
three existing flow discovery algorithms, and an existing stochastic discovery
technique, finding models of comparable quality, across a broader range of logs,
in a generally shorter time.

The estimators presented here are not exhaustive, and we look forward to
future research on novel, improved estimators. The estimator framework also
implies the possibility of “direct stochastic discovery” algorithms which do not
use a separate control flow algorithm, but produce a control flow model as a
side-effect of a stochastic one. A simplicity measure sensitive to both structural
representation and stochastic information in a process model would be a useful
evaluation tool for work in this area, and is an avenue of future research.

Acknowledgement. Computational resources used included those provided by
the eResearch Office at QUT.

References
[1] Wil M. P van der Aalst, Arya Adriansyah, and Boudewijn van Dongen.

“Replaying history on process models for conformance checking and
performance analysis”. In: DMKD 2.2 (2012), pp. 182–192.

[2] Wil M. P. van der Aalst. “Academic View: Development of the Process
Mining Discipline”. In: Springer, 2020, pp. 181–196.

[3] Wil van der Aalst. Process Mining: Data Science in Action. 2nd ed.
Berlin Heidelberg: Springer-Verlag, 2016.

[4] M. Ajmone Marsan et al. “The effect of execution policies on the
semantics and analysis of stochastic Petri nets”. In: TSE (1989).

[5] Amirah Mohammed Alharbi. “Unsupervised Abstraction for Reducing
the Complexity of Healthcare Process Models”. PhD thesis. University
of Leeds, July 2019.

[6] Nikolas Anastasiou and William Knottenbelt. “Deriving coloured
generalised stochastic petri net performance models from high-precision
location tracking data”. In: PE. 2013, pp. 375–386.

[7] Adriano Augusto et al. “Split miner: automated discovery of accurate
and simple business process models from event logs”. In: KaIS (2019).

[8] F. Bause and P.S. Kritzinger. Stochastic Petri Nets: An Introduction to
the Theory. Vieweg+Teubner Verlag, 2002.

[9] Simona Bernardi et al. “A systematic approach for performance
evaluation using process mining: the POSIDONIA operations case
study”. In: QUDOS. 2016, pp. 24–29.

[10] Seppe K. L. M. vanden Broucke et al. “Fodina: A robust and flexible
heuristic process discovery technique”. In: DSS (2017), pp. 109–118.

12 Adam Burke et al.

[11] Adam Burke et al. Report On Stochastic Process Discovery By Weight
Estimation Experimental Results. Tech. rep. https://eprints.qut.
edu.au/204662/. Sept. 2020.

[12] Berny Carrera et al. “Constructing probabilistic process models based
on hidden Markov models for resource allocation”. In: BPM. 2014.

[13] Boudewijn F. van Dongen et al. “The ProM Framework: A New Era in
Process Mining Tool Support”. In: Petri Nets. 2005, pp. 444–454.

[14] Volker Gruhn and Ralf Laue. “Adopting the Cognitive Complexity
Measure for Business Process Models”. In: CI. 2006, pp. 236–241.

[15] Haiyang Hu, Jianen Xie, and Hua Hu. “A novel approach for mining
stochastic process model from workflow logs”. In: JCIS (2011).

[16] Anna Kalenkova et al. “A Framework for Estimating Simplicity of
Automatically Discovered Process Models Based on Structural and
Behavioral Characteristics”. In: ICPM. 2020.

[17] Krzysztof Kluza et al. “Square Complexity Metrics for Business Process
Models”. In: ABICT. Springer, 2014, pp. 89–107.

[18] Edouard Leclercq et al. “Identification of timed stochastic Petri net
models with normal distributions of firing periods”. In: IFAC (2009).

[19] Sander J. J. Leemans et al. “Discovering block-structured process
models from event logs-a constructive approach”. In: Petri nets. 2013.

[20] Sander J. J. Leemans et al. “Earth movers’ stochastic conformance
checking”. In: BPM forum. Springer, 2019, pp. 127–143.

[21] Sander J. J. Leemans et al. “Stochastic-Aware Conformance Checking:
An Entropy-Based Approach”. In: CAiSE. 2020, pp. 217–233.

[22] Chuang Lin et al. “Performance equivalent analysis of workflow systems
based on stochastic petri net models”. In: CoopIS. 2002, pp. 64–79.

[23] Fabrizio Maria Maggi, Marco Montali, and Rafael Peñaloza.
“Probabilistic Conformance Checking Based on Declarative Process
Models”. en. In: CAiSE. 2020, pp. 86–99.

[24] Jan Mendling, Hajo A. Reijers, and Jorge Cardoso. “What Makes
Process Models Understandable?” In: BPM. 2007, pp. 48–63.

[25] Andreas Rogge-Solti et al. “Discovering Stochastic Petri Nets with
Arbitrary Delay Distributions from Event Logs”. In: BPM workshops.
2014, pp. 15–27.

[26] Andreas Rogge-Solti et al. “Prediction of business process durations
using non-Markovian stochastic Petri nets”. In: IS (2015).

[27] Arik Senderovich et al. “Data-driven performance analysis of scheduled
processes”. In: BPM. 2016, pp. 35–52.

[28] Arik Senderovich et al. “Discovering Queues from Event Logs with
Varying Levels of Information”. In: BPM workshops. 2016, pp. 154–166.

[29] Loukas C. Tsironis et al. “Fuzzy Performance Evaluation of Workflow
Stochastic Petri Nets by Means of Block Reduction”. In: ToS (2010).

[30] A.J.M.M. Weijters and J.T.S. Ribeiro. “Flexible Heuristics Miner
(FHM)”. In: CIDM. 2011, pp. 310–317.

https://eprints.qut.edu.au/204662/
https://eprints.qut.edu.au/204662/

Graph-based process mining

Amin Jalali

Department of Computer and Systems Sciences
Stockholm University, Sweden

aj@dsv.su.se

Abstract. Process mining is an area of research that supports discov-
ering information about business processes from their execution event
logs. One of the challenges in process mining is to deal with the in-
creasing amount of event logs and the interconnected nature of events in
organizations. This issue limits the organizations to apply process mining
on a large scale. Therefore, this paper introduces and formalizes a new
approach to store and retrieve event logs into/from graph databases. It
defines an algorithm to compute Directly Follows Graph (DFG) inside
the graph database, which shifts the heavy computation parts of process
mining into the graph database. Calculating DFG in graph databases
enables leveraging the graph databases’ horizontal and vertical scaling
capabilities to apply process mining on a large scale. We implemented
this approach in Neo4j and evaluated its performance compared with
some current techniques using a real log file. The result shows the possi-
bility of using a graph database for doing process mining in organizations,
and it shows the pros and cons of using this approach in practice.

Keywords: Process mining, graph database, Big Data, Neo4j

1 Introduction

Business Process Management (BPM) is a research area that aims to enable or-
ganizations to narrow the gap between business goals and information technology
support [21]. Business process evaluation is a key support in narrowing down this
gap. There are two evaluation techniques to analyze business processes, a.k.a.,
model-based analysis, and data-based analysis [17]. While model-based analysis
deals with analyzing business process models, the data-based analysis mostly
focuses on analyzing business processes based on their execution event logs.

Process Mining is a discipline in the BPM area that enables data-based anal-
ysis for business processes in organizations [18]. It allows analysts not only to
evaluate the business processes but also to perform process discovery, compli-
ance checking, and process enhancement based on the execution result, a.k.a.,
event logs. As the volume of logs increases, new opportunities and challenges
also appear. The large volume of logs enables the discovery of more information
about business processes; while also raises some challenges, such as feasibility,
performance, and data management.

The large volume of data is a challenge to perform process mining in orga-
nizations. There are different approaches to deal with this problem. This paper
proposes and formalizes a new approach to store and retrieve event logs in graph

2 A. Jalali

databases to do process mining on a large volume of data. It also defines an al-
gorithm to compute Directly Follows Graph (DFG) inside the graph database.
As a result, it enables i) removing the requirement to move data into analysts’
computer, and ii) scaling the DFG computation vertically and horizontally.

The approach is implemented in Neo4j, and its performance is evaluated
in comparison with some current techniques based on a real log file. The result
shows the feasibility of this approach in discovering process models when the data
is much bigger than the computational memory. It also shows better performance
when dicing data into small chunks.

The remainder of this paper is organized as follows. Section 2 gives a short
background on process mining and graph database. Section 3 introduces the
graph-based process mining approach, and Section 4 elaborates on the imple-
mentation of the approach in Neo4j. Section 5 reports the evaluation results.
Section 6 discuss alternative approaches and related works, and finally, Section 7
concludes the paper and introduces future research.

2 Background

2.1 Process Mining

Process Mining is a research area that supports business process data-based
analysis [18]. Process discovery is a sort of process mining technique that enables
identifying process models from event logs automatically. There are different
sorts of perspectives that can be discovered from event logs. Control-flow, which
describes the flow of activities that happened in a business process, is one of
the most important ones. Directly-Follows Graphs (DFGs) is a simple notation
widely used and considered a de-facto standard for commercial process mining
tools [19].

Fig. 1 shows an overview of how a process model can be discovered from
event logs using DFG graphs. The process discovery starts by loading a log file
that stores business process execution results, a.k.a., log files. Each log contains
a set of traces representing different cases that are performed in the business
process. Each trace contains a set of events representing the execution result of

activity 1 activity 2

activity 1 0 100

activity 2 0 0 Activity 1 Activity 2

case id , activity name
1 , activity 1
1 , activity 2
2 , activity 1
2 , activity 2
3 , activity 1
...

Log File Directly Follows Graph
(DFG)

Process Model

DFG
Calculation

Discovery
Algorithm

Fig. 1. Steps in a process discovery algorithm

Graph-based process mining 3

activities in the business process. Thus, a log file shall contain information about
traces and events at a minimum. Note that the events should be stored according
to the execution order with this basic setup, unless we have information about
execution time. It is usual to have more information like the execution time and
the resource who has done the activity in the log file.

The next step is calculating the Directly Follows Graph (DFG). This graph
shows the frequency of direct relations between activities that are captured in
the log file. The result can be considered as a square matrix with the activity
names as the index for rows and columns. Let’s consider the cell with the index
of activity 1 for the row and activity 2 for the column (see Fig. 1). The value of
the cell shows the number of times that the activity 2 happened after activity
1. Although the calculation of DFG comes back to alpha miner, which was
introduced around 20 years ago, it is still the backbone for many process mining
algorithms and tools [20]. There are different variations of DFG that store more
information, but the basic idea is the same.

The last step is to infer the process model from DFG matrix based on rules
that are specified by a process discovery algorithm. This step usually does not
take much time since the computation is performed on top of DFG.

2.2 Graph Database

Graph databases are Database Management Systems (DBMS) that support cre-
ating, storing, retrieving, and managing graph database models. Graph database
models are defined as the data structure where schema and instances are mod-
eled as graphs, and the operation on graphs are graph-oriented [2]. The idea is
not new, and it comes back to the late eighties when the object-oriented models
were also introduced [2]. However, it recently got much attention in both re-
search and industry due to its ability to handle the huge amount of data and
networks. It enables leveraging parallel computing capabilities to analyze mas-
sive graphs. As a result, a new discipline is emerged in research, called Parallel
Graph Analytics [15].

There are different sorts of graph databases with different features. For exam-
ple, Neo4j is a graph DBMS that supports both vertical and horizontal scaling,
meaning that not only the hardware of the system that runs the DBMS can be
scaled out, but the number of physical nodes that run the DBMS as a network
can be increased. These features enable having a considerable performance at
runtime.

3 Approach

This paper proposes a new approach to store event logs and retrieve a DFG using
a graph database. In this way, the scalability capabilities in graph databases
can be used in favor of applying process mining. The aim is to introduce an
alternative approach to enable discovering process models from large event logs.

Thus, the formal definitions of event repository in graph form are introduced.
Then, the soundness property of such a repository log is defined. Finally, an
algorithm to discover DFG is introduced.

4 A. Jalali

Note that the formal definition is simplified by limiting the set of attributes
to hold information about activities. In practice, the definition of attributes can
be extended to store all information about the data perspective.

3.1 Definitions

Definition 1 (Event Repository). An event repository is a tuple G = (N =
L ∪ T ∪ E ∪A,R), where:

– N is the superset of L, T , E, and A subsets which are pairwise disjoint,
where:
– L represents the set of logs,
– T represents the set of traces,
– E represents the set of events,
– A represents the set of attributes, representing activities, where:
– L ∩ T ∩ E ∩A = ∅.

– R = L× T ∪ T × E ∪ E × E ∪ E ×A is the set of relations connecting:
– logs to traces, i.e., L× T
– traces to events, i.e., T × E,
– events to events, i.e., E × E,
– events to attributes, i.e., E ×A, where:
– N ∩R = ∅

Let’s also define two operators on the graph’s nodes as:

– •n represents the operator that retrieves the set of nodes from which there
are relations to node n, i.e., •n = {∀e ∈ N |(e, n) ∈ R}.
– This operator enables retrieving incoming nodes for a given node, e.g.,
retrieving the set of events that occurred for an activity.

– n• represents the operator that retrieves the set of nodes to which there are
relations from node n, i.e., n• = {∀e ∈ N |(n, e) ∈ R}.
– This operator enables retrieving outcoming coming nodes for a given node,
e.g., retrieving the set of events that occurred for a trace.

Note that the relations among logs, traces, events, and attributes are adopted
from the eXtensible Event Stream (XES) standard [1]. The information is stored
in attributes like XES standard which states: ”Information on any component
(log, trace, or event) is stored in attribute components” [1]. This is the reason
why the activities are represented as attributes in this work. Note that we limit
attributes to represent activities only in this work for making formalization sim-
ple for the sake of presentation. In practice, the attributes can have types to
represent different properties. For example, they can be used to store different
data properties of an event, e.g., who has performed it, what data it generates,
etc. The usage of attributes in practice can also be extended to hold case id
properties for traces and metadata information for the log node. Despite it is
good to have the case id as an attribute, we kept the formalization simple by
ignoring that as traces represent cases in this structure. Note that you need to
know the case id to create such a structure, which is needed in the ETL process.

Graph-based process mining 5

Definition 2 (Soundness). An event repository G = (N = L∪T ∪E ∪A,R),
where N,L, T,E,A,R, represent the set of Nodes, Logs, Traces, Events, At-
tributes, Relations respectively, is sound iff:

– ∀t ∈ T, | • t| = 1, meaning that a trace must belong to 1 and only 1 log.
– ∀e ∈ E, | • e ∩ T | = 1, meaning that an event must belong to 1 and only 1

trace.
– ∀e ∈ E, | •e∩E| <= 1, meaning that an event can only have at most 1 input

flow from another event.
– ∀e ∈ E, |e•∩E| <= 1, meaning that an event can only have at most 1 output

flow to another event.
– ∀e ∈ E, |e • ∩A| = 1, meaning that an event must be related to 1 and only 1

attribute.

Note that the soundness is a property of event repository and shall not be
mistaken by the soundness property of a modeling notation like Petri nets. It
is worth mentioning that this formalization can be extended to enable several
types of sequences among event logs. To calculate DFG, we need to count the
number of direct relations among events for each activity pairs. Algorithm 1
defines how the DFG for a given sound event repository can be calculated.

Algorithm 1: Algorithm for calculating dfg

1 Algorithm dfgcalculator(G = (N = L ∪ T ∪ E ∪A,R))
2 Ψ ← ∅;
3 foreach two attributes a, b ∈ A do
4 c← 0;
5 foreach e ∈ •a, e′ ∈ •b do
6 if (e, e′) ∈ R then
7 c← c+ 1;

8 Ψ ← Ψ ∪ {(a, b, c)};
9 return Ψ ;

3.2 Example

This section elaborates on the definitions through an example.
Fig.2 shows an example of a sound event repository graph. The set of nodes

for Log, Trace, Event, and Attribute are colored as green, red, white, and yellow,
respectively. This repository includes one log file, called l1, which has two traces,
i.e., t1 and t2. t1 has three events that occurred in this order e1 → e2 → e3.
t2 also has three events that occurred in this order e4 → e5 → e6.

As it can be seen, each event is related to one activity, e.g., e1 is the execution
of activity a1. To get the list of events that happened for an activity a1, we can
use •a1 operator, which returns {e1}. For some activities, there might be more
than one event, e.g., •a2 returns {e2, e4}. Applying Algorithm 1 on this event
repository will return the DFG. The DFG calculation is described as below:

6 A. Jalali

l1t1

e1

e2

e3

t2

e4

e5

e6

a1 a2

a3

a4

Fig. 2. An example of a sound event repository graph

– for each pair of activities, the algorithm will calculate the frequency. We
show the calculation for one pair example, i.e., a2, a3:
– •a2 retreives {e2, e4}
– •a3 retreives {e3, e5}
– c =

∑
∀e∈•a2,e′∈•a3

|(e, e′) ∈ R| =
∑

∀e∈{e2,e4},e′∈{e3,e5}

|(e, e′) ∈ R|

= |{(e2, e3), (e4, e5)}| = 2

If we calculate the frequencies for all pairs of activities, the result will be like
Table1.

a1 a2 a3 a4

a1 0 1 0 0

a2 0 0 2 0

a3 0 0 0 1

a4 0 0 0 0

Table 1. DFG calculation for the sample event repository graph

4 Implementation

The approach presented in this paper is implemented using the Neo4j, which
was chosen because it supports i) storing graphs and doing graph operations, ii)
both vertical and horizontal scaling, iii) querying the graph using Cypher, iv)
containerizing the database, which allows controlling the computational CPU
and memory.

We implemented a data-aware version of the approach. The main differences
with the formalization are:

– Attributes store activity names and other attributes that might be associated
with an event like resource id, case id, etc. To comply with PM4Py, we stored
the log, case, and activity name by ’log concept name’, ’case concept name’,
and ’concept name’ respectively.

Graph-based process mining 7

– events have timestamps to enable dicing information based on time. Note
that the timestamp cannot be defined as an attribute with its own key since
we will end up with many extra nodes due to many timestamps that exist
for each event. Thus, they are kept as an attribute of Event class, following
the same practice to deal with times in data warehousing [14].

The calculation of DFG is implemented using a Cypher query as below:

match

(a1:Attribute {key:’concept_name ’}) <--(:Event)-[n]->(:Event)

-->(a2:Attribute {key:’concept_name ’})

return

a1.val as dfg_from , a2.val as dfg_to , count(n) as dfg_freq

The match clause in the query identifies all patterns in sub-graphs that match
the expression. This expression selects two attributes a1 and a2 with the type of
concept name, which indicates that they are activities’ names. Then, it selects all
incoming events to those attributes where there is a direct relationship between
those two events. The return clause retrieves all combinations of attributes in
addition to the number of total direct relations between their events, which is
the calculation that we formalized in Algorithm 1.

To limit the number of events based on their timestamp, we can easily add
a where clause to the cypher query to limit the timestamp. For other attributes,
the associated attribute node can be filtered.

5 Evaluation

This section reports the evaluation result of the approach, which is presented in
this paper1. To evaluate the approach, we calculated DFG for a real public log
file [6] using Process Mining for Python (PM4Py) library [3]. This dataset [6] is
selected because it is published openly, which makes the experiment repeatable.
It is also the biggest log file that we could find in the BPI challenges, which can
help us to evaluate the performance.

To evaluate the performance, we need to control the resources that are avail-
able for performing process mining. Thus, we decided to containerize the ex-
periments and run them with Docker. Docker is a Platform as a Service (PaaS)
product that enables creating, running, and managing containers. It also enables
the control of the resources that are available for each container, such as RAM
and CPU.

Among different process mining tools, we chose PM4Py [3], because i) it is
open-source; ii) the DFG calculation step and discovery step can be separated
easily, and iii) it can easily be encapsulated in a container. The separation of DFG
calculation and discovery step in this library also enables reusing all discovery
algorithms along using our approach, which makes our approach very reusable.

We designed two experiments to evaluate our approach. In Experiment 1, we
loaded the whole log file into both containers running neo4j and PM4Py, so we

1 The data, code and isntructions can be found at https://github.com/neo4pm/

supporting_materials/tree/master/papers/Graph-based%20process%20mining.

https://github.com/neo4pm/supporting_materials/tree/master/papers/Graph-based%20process%20mining
https://github.com/neo4pm/supporting_materials/tree/master/papers/Graph-based%20process%20mining

8 A. Jalali

kept the number of event logs constant. We calculated DFG several times by
changing the RAM and CPU, so we defined the computational resources as a
variable. In Experiment 2, we kept RAM and CPU constant for both containers,
and we calculated DFG by dicing the data. The dicing is done based on a time
constraint, and we added more days in an accumulative way to increase the
number of events. We ran the experiments for each container separately to make
sure that the assigned resources are free and available.

Constant Variable

Experiment 1 Events in the Log (9 million events) CPU & RAM

Experiment 2 CPU & RAM Events in the Log

Table 2. Evaluation setting

5.1 Experiment 1

To simulate the situation where the computational memory is less than the log
size, we started by assigning 512 megabytes of ram to each container. We added
the same amount of RAM in each experiment round until we reached 4 gigabytes.
We also changed the CPU starting from half of a CPU (0.5), by adding the same
amount at each round until we reached 4.0.

Fig.3 shows the execution result for both containers, where the x, y and z
axes refer to the available memory (RAM) (in megabytes), DFG calculation time
(in seconds), and available CPU quotes, respectively. The experiment related to
neo4j and PM4Py containers is plotted in red and blue, respectively. As can be

Fig. 3. Evaluating DFG calculation time by scaling resources

Graph-based process mining 9

seen, PM4Py could not compute DFG when the memory was less than the size
of the log, i.e., around 1.5 gigabytes, while neo4j could calculate DFG in that
setting. This shows that the graph database can compute DFG when compu-
tational memory is less than the log size, which is an enabler when applying
process mining on a very large volume of data.

As it can be seen in the figure, the increasing amount of memory reduced
the time that neo4j computed the DFG, while it has very little effect on PM4Py.
This is no surprise for in-memory calculation since if the log fits the memory,
then the performance will not be increased much by adding more memory. It is
also visible that assigning more CPU does not affect the performance of either
of these approaches.

It should also be mentioned that despite increasing memory can reduce the
DFG calculation time for neo4j significantly; it cannot be faster than PM4Py
when calculating the DFG on the complete log file. The reason can be that
graph databases shall process metadata, which adds more computation than
in-memory calculation approaches. Thus, for small log files that can fit the com-
puter’s memory, the in-memory approach can be better if the security and access
control are not necessary.

5.2 Experiment 2

Event logs usually contain different variations that exist in the enactment of
business processes [4]. These variations make process mining challenging be-
cause discovering the process based on the whole event log usually produces the
so-called spaghetti models, which usually cannot be comprehended by humans,
so they have very little value. Thus, analysts need to filter data to produce a
meaningful model, which is a common practice in applying process mining [4,11].
Therefore, we designed this experiment to compare our approach and PM4Py
when calculating DFG on a filtered subset of data without scaling the infras-
tructure.

To evaluate this scenario, we kept the resources (RAM and CPU) constant
for both containers, but we changed the condition for filtering the data. The
condition is set based on the dates in which the event occurred. We started by
filtering events for a day range, and we calculated DFG for the filtered data.
Then, we expanded the filter range by including events that occurred the day
after, and we calculated DFG again. We repeated the process for 30 days. As
we expanded the filter range by including events that occurred on more days,
we increased the number of events. This means that we kept the number of
events in the log as a variable. We assigned 14 Gb for RAM and 4 CPU for
each container, which was run separately. We diced the data in both settings by
filtering events that happened during the first day; then, we added one more day
to the filter condition to increase the events in an accumulative way. We repeated
this step for almost four months. In this way, we could compare the performance
by considering how the size of the filtered events affects the performance of
calculating DFG.

Fig.4 shows the evaluation result, where the x and y axes refer to the number
of events (in millions) and DFG calculation time (in seconds). As can be seen,

10 A. Jalali

Fig. 4. Evaluating DFG calculation time by dicing the log

our approach performed better when the number of events is less than 2 million.
Note that this is still a very big sub-log to analyze for process mining, so this
shows that our approach can improve the performance of process mining when
dealing with sub-sets of the log. However, PM4Py performed better when the
number of events exceeded 2 million. This is no surprise since PM4Py loaded logs
into memory first, so increasing the size will have less effect on its performance.
Indeed, the difference is only related to filtering the log and retrieving the biggest
chunk of data in each iteration.

6 Related Work and Discussion

The related work can be divided into two categories: those related to scalability
and those using graph databases.

6.1 Scalability

The scalability issue in process mining is a big concern for applying the tech-
niques on a large volume of data. Thus, different researchers investigated this
problem through different techniques.

Hernández, S. et al. computed intermediate DFG and other matrixes through
the MapReduce technique over a Hadoop cluster [10]. The evaluation of their
approach shows a similar trend for a performance like what we presented in
Fig.4. The performance cannot be compared precisely due to different setup and
resources. This is the closest approach to ours.

MapReduce has been used by other researchers for the aim of process mining,
e.g., [9,16]. As discussed by [10], MapReduce has been used to support only event

Graph-based process mining 11

correlation discovery in [16], and it is used to discover process models using Alpha
Miner and the Flexible Heuristics Miner in [9].

6.2 Graph database

There are different attempts to use graph databases with process mining.
Esser S. and Fahland D. used the graph database to query multi-dimensional

aspects from event logs. This is one important use case that has been introduced
by a graph database, i.e., adding more features to the data [7]. They have used
Neo4j as the graph database and used Cypher to query the logs. The approach
uses a graph database as a log repository to store data without any predefined
structure, which is quite different from the topic of this paper. In this regard,
the approach is similar to [5], where a relational database is used to store the
data. The main difference is that [7] demonstrates that the graph database has
more capability to add more features to data, which is a very important topic
in any machine learning related approach in general.

Joishi J. and Sureka A. also used a graph database for storing non-structured
event logs [12, 13]. They also demonstrated that Actor-activity matrix could be
calculated using Cypher. However, the approach is context-dependent since the
logs are not standardized like our approach. Also, the approach cannot be used
with other process discovery algorithms since it does not shift and separate the
computation of DFG to a graph database.

Parallel to this work, we realized that Esser S. and Fahland D. [8] extended
their approach [7] to discover different perspectives from events which are stored
in neo4j. They also introduced an approach to discover DFG from their repos-
itory. The approach is similar, yet its focus is more on creating the repository,
while our focus is mostly on measuring the performance and scaling. This study
also confirms the benefits of using a graph database for process mining, which
can extend the application of process mining in practice.

7 Conclusion

This paper introduced and formalized a new approach to support process mining
using graph databases. The approach defines how log files shall be stored in a
graph database, and it also defines how Directly Follows Graphs (DFG) can be
calculated in the graph database. The approach is evaluated in comparison with
PM4Py by applying it to a real log file. The evaluation result shows that the
approach supports mining processes when the event log is bigger than compu-
tational memory. It also shows that it is scalable, and the performance is better
when dicing the event log in a small chunk.

Graph databases can bring more benefits to process mining than what we
have presented in this paper. They are useful to support complex analysis, which
requires taking the interconnected nature of data into account. Thus, they can
enable more advanced analysis by incorporating data relations while applying
different process mining techniques. As future work, we aim to extend the for-
malization to represent the data-aware event repository. It is also interesting to

12 A. Jalali

compare this approach with process discovery approaches that can be imple-
mented in Apache Spark. We also intend to develop a new library to support
the use of a graph database for process mining for practitioners and researchers.

References

1. IEEE standard for extensible event stream (xes) for achieving interoperability in
event logs and event streams. IEEE Std 1849-2016, pages 1–50, 2016.

2. R. Angles and C. Gutierrez. Survey of graph database models. ACM Computing
Surveys (CSUR), 40(1).

3. A. Berti, S. van Zelst, and W. van der Aalst. Process Mining for Python (PM4Py):
Bridging the Gap Between Process-and Data Science. page 13–16, 2019.

4. A. Bolt, M. De Leoni, W. van der Aalst, and P. Gorissen. Exploiting process cubes,
analytic workflows and process mining for business process reporting: A case study
in education. In SIMPDA, pages 33–47, 2015.

5. E. De Murillas, H. Reijers, and W. van der Aalst. Connecting databases with
process mining: a meta model and toolset.

6. M. Dees and B. van Dongen. Bpi challenge 2016: Clicks not logged in. 2016.
7. S. Esser and D. Fahland. Storing and querying multi-dimensional process event

logs using graph databases. In BPM Conference, pages 632–644. Springer, 2019.
8. S. Esser and D. Fahland. Multi-dimensional event data in graph databases. arXiv

preprint arXiv:2005.14552, 2020.
9. J. Evermann. Scalable process discovery using map-reduce. IEEE Transactions on

Services Computing, 9(3):469–481, 2014.
10. S. Hernández, J. Ezpeleta, S. van Zelst, and W. van der Aalst. Assessing pro-

cess discovery scalability in data intensive environments. In Big Data Computing
(BDC), pages 99–104. IEEE, 2015.

11. A. Jalali. Exploring different aspects of users behaviours in the dutch autonomous
administrative authority through process cubes. Business Process Intelligence
(BPI) Challenge, 2016.

12. J. Joishi and A. Sureka. Vishleshan: performance comparison and programming
process mining algorithms in graph-oriented and relational database query lan-
guages. In International Database Engineering & Applications Symposium, pages
192–197, 2015.

13. J. Joishi and A. Sureka. Graph or relational databases: A speed comparison for
process mining algorithm. arXiv preprint arXiv:1701.00072, 2016.

14. R. Kimball and M. Ross. The data warehouse toolkit: the complete guide to dimen-
sional modeling. John Wiley & Sons, 2011.

15. A. Lenharth, D. Nguyen, and K. Pingali. Parallel graph analytics. Communications
of the ACM, 59(5):78–87, 2016.

16. H. Reguieg, F. Toumani, H. Motahari-Nezhad, and B. Benatallah. Using mapre-
duce to scale events correlation discovery for business processes mining. In BPM
Conference, pages 279–284. Springer, 2012.

17. W. van der Aalst. Business process management: a comprehensive survey. ISRN
Software Engineering, 2013, 2013.

18. W. van der Aalst. Process Mining: Data Science in Action. Springer, 2016.
19. W. van der Aalst. A practitioner’s guide to process mining: Limitations of the

directly-follows graph, 2019.
20. W. van der Aalst. Academic view: Development of the process mining discipline.

In Process Mining in Action: Principles, Use Cases and Outlook. 2020.
21. M. Weske. Business process management: concepts, languages, architectures.

Springer, 2019.

