

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)

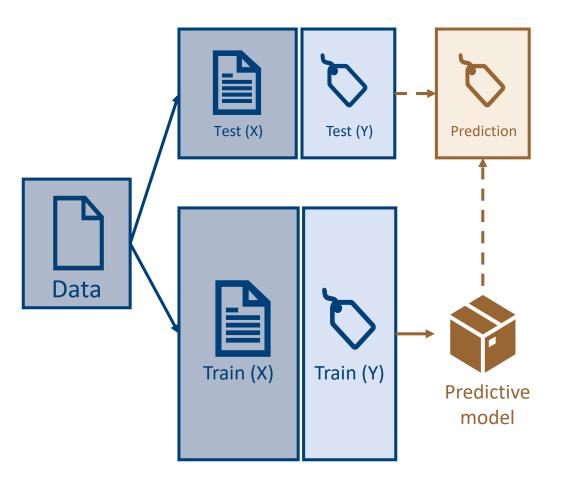
Manifold Learning for Adversarial Robustness in Predictive Process Monitoring

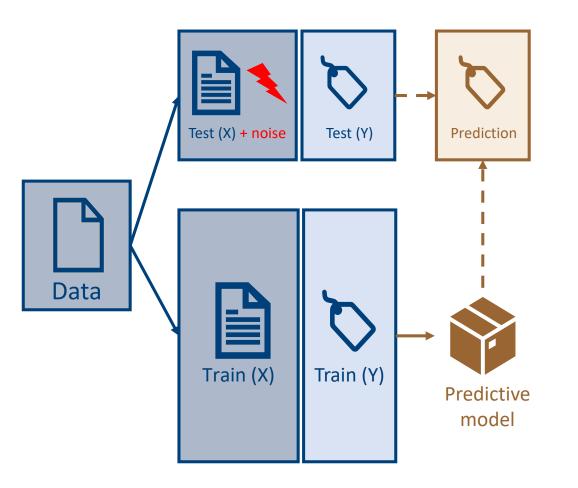
Alexander Stevens^{1,*}, Jari Peeperkorn¹, Johannes De Smedt¹, Jochen De Weerdt¹

¹ Research Centre for Information Systems Engineering (LIRIS), KU Leuven (Belgium) * Corresponding author

Introduction to Machine Learning

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)

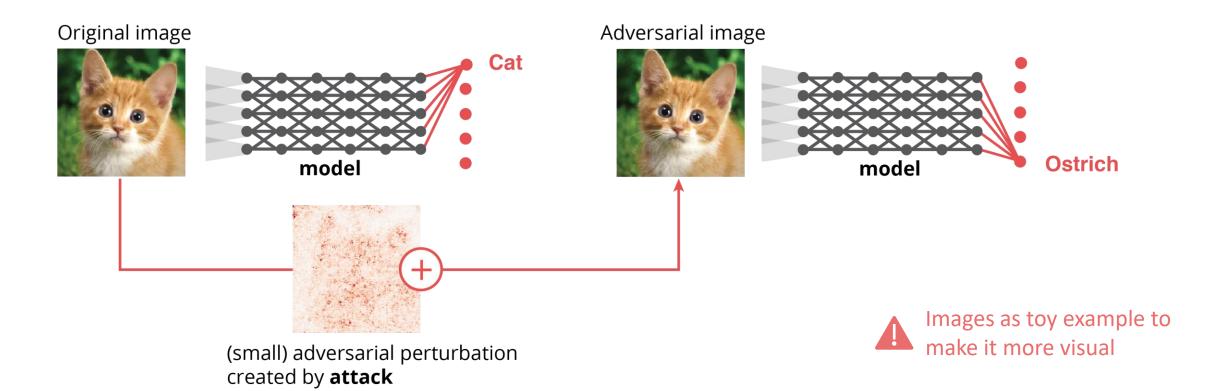




KU LEUVEN Introduction to Adversarial Machine Learning RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS) Did the prediction Test (X) + noise Test (Y) Prediction change? \bigcirc Ο 0 Data Train (X) Train (Y) Predictive model

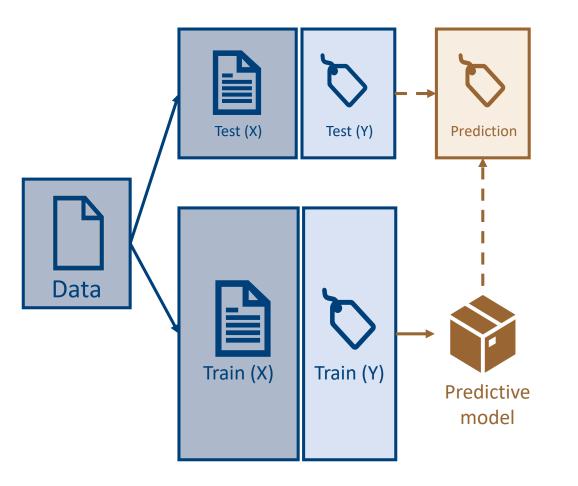
4

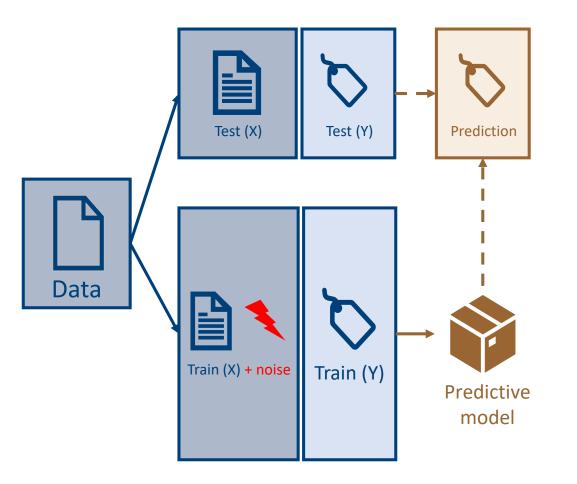
RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)

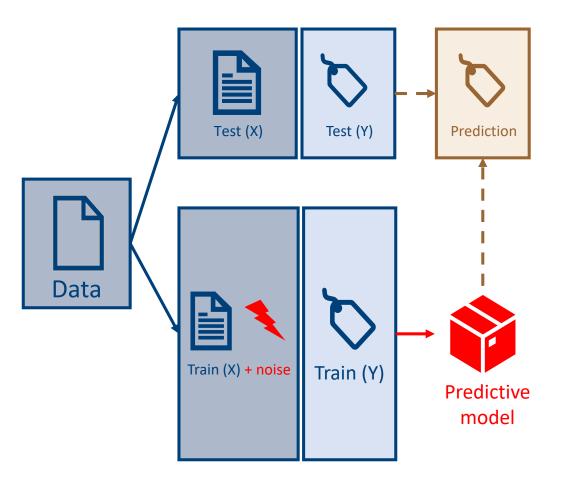


Small *perturbation* causes the model to make a false prediction"^{1,2}

¹Molnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable (2nd ed.). christophm.github.io/interpretable-ml-book/ ²Figure: NIPS 2018 Adversarial Vision Challenge



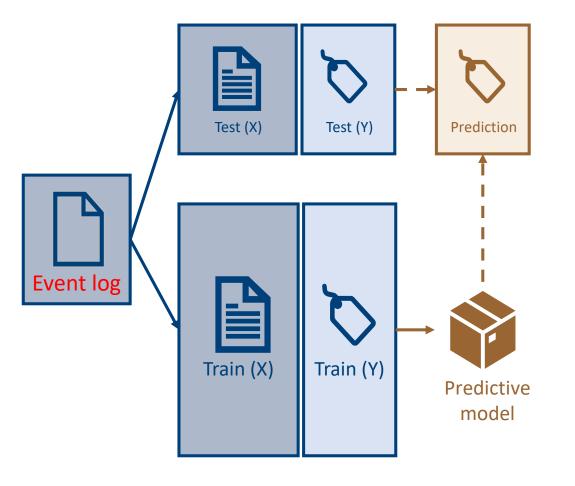




KU LEUVEN Introduction to Adversarial Machine Learning RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS) Did the prediction Test (X) Test (Y) Prediction change? \bigcirc Ο 0 Data Train (X) + noise Train (Y) Predictive model

Introduction to (Outcome-Oriented) Predictive Process Monitoring

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)

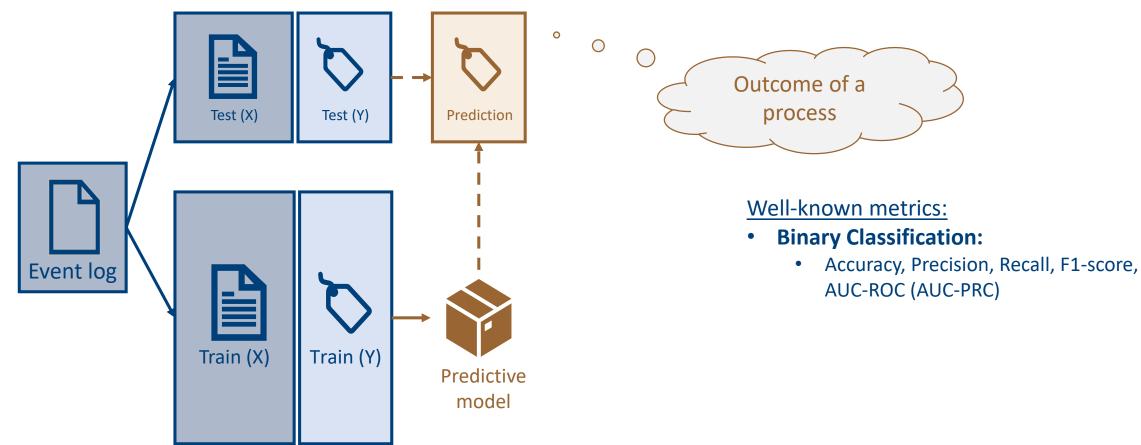


Outcome-oriented predictive process monitoring

Process data (i.e. an event log) contains different cases → Each case has:

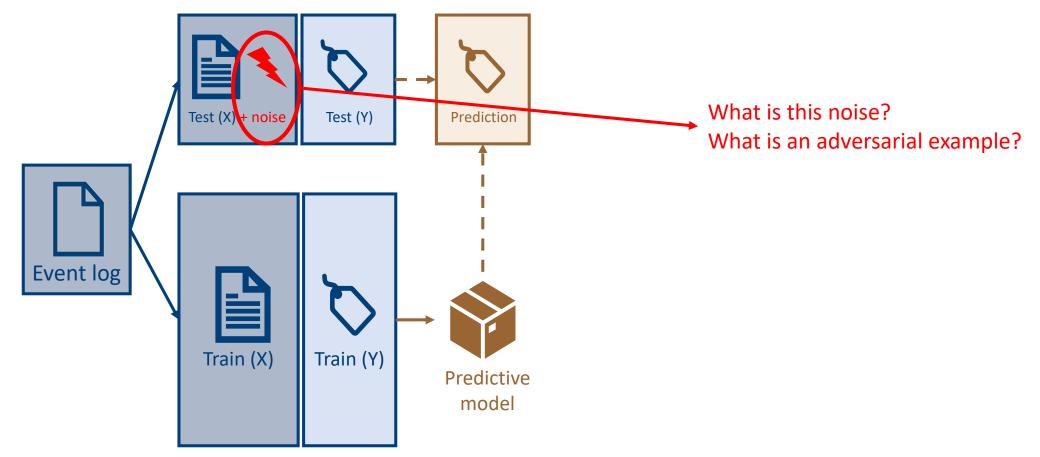
- A timestamped records of events
 - Activities
 - Other dynamic attributes
- A Case ID
- Static attributes

Introduction to (Outcome-Oriented) Predictive Process Monitoring



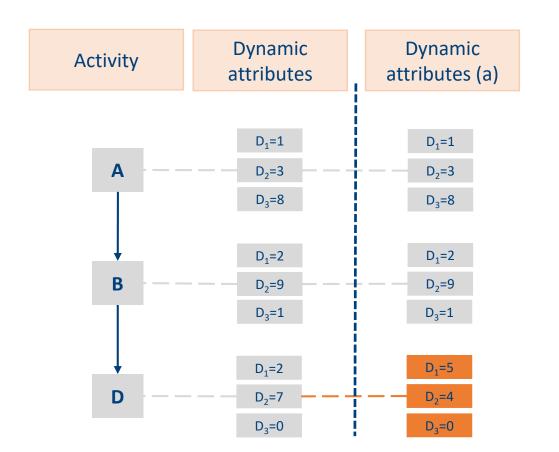
Adversarial Machine Learning in Process Outcome Prediction

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)



What is this noise? What is an adversarial attack?

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)



Last Event Attack (A1)

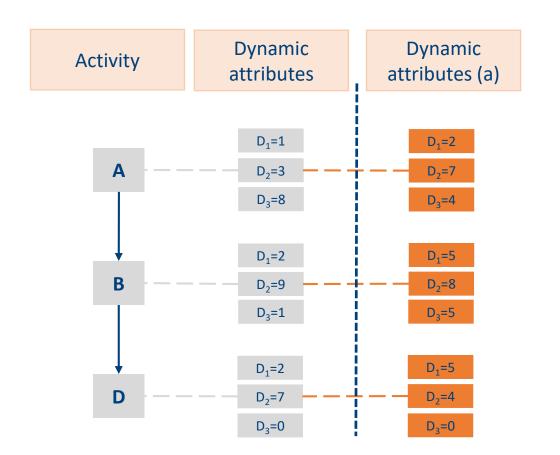
• Permuting dynamic attribute of the last event of the prefix

✓ Intuitive

 Model is still able to learn correct behaviour of the attribute

What is this noise? What is an adversarial attack?

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)



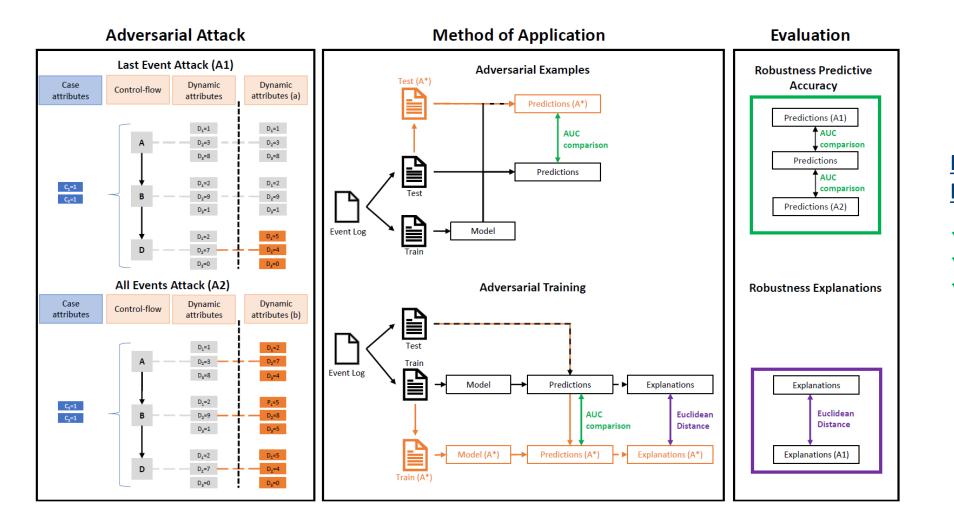
All Event Attack (A2)

- Permuting dynamic attribute of all the events of the sequence
- X Model is not able anymore to learn correct behaviour of attributes
- X Boils down to pure noise attribute values

14

Previous work

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)



Robustness Assessment Framework³

✓ 3 state-of-the-art POP models
✓ 2 different adversarial attacks
✓ 6 real-life event logs

³Stevens, A., De Smedt, J., Peeperkorn, J., & De Weerdt, J. (2022, October). Assessing the Robustness in Predictive Process Monitoring through Adversarial Attacks. In 2022 4th International Conference on Process Mining (ICPM) (pp. 56-

Limitations of previous work

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)

• Random perturbations can be **unnatural**⁴

BMI of 50 is still within range, but is not realistic (nor correct)

⁴ Stutz, D., Hein, M., & Schiele, B. (2019). Disentangling adversarial robustness and generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 16 Recognition (pp. 6976-6987).

Limitations of previous work

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)

- Random perturbations can be **unnatural**⁴
- No guarantee that underlying label of the instance after the adversarial attack did not change

An BMI of 50 is classified as overweight

⁴ Stutz, D., Hein, M., & Schiele, B. (2019). Disentangling adversarial robustness and generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 17 Recognition (pp. 6976-6987).

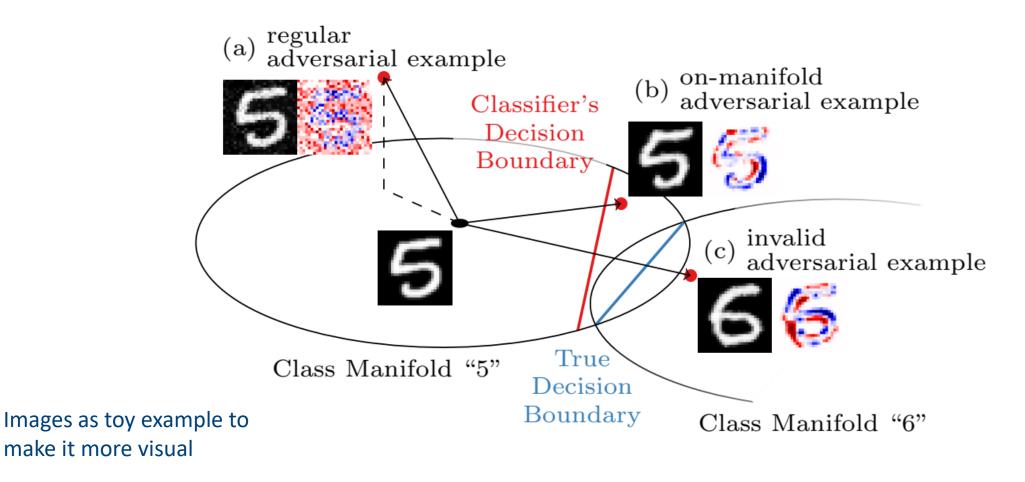
Limitations of previous work

- Random perturbations can be **unnatural**⁴
- No guarantee that underlying label of the instance after the adversarial attack did not change
- No defence mechanism against these adversarial attacks
 - Only tested their inherent vulnerability against these attacks

Introduction to Manifold Learning

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)

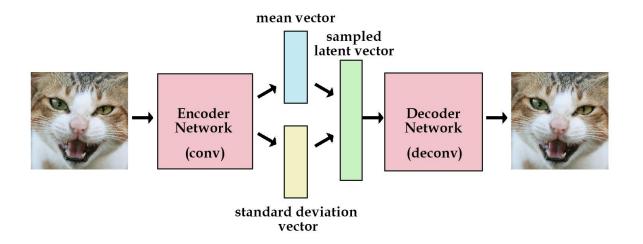
regular adversarial examples vs. natural adversarial examples⁴



⁴Stutz, D., Hein, M., & Schiele, B. (2019). Disentangling adversarial robustness and generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 19 Recognition (pp. 6976-6987).

Introduction to Manifold Learning

- The adversarial examples should lie within the distribution of the original data manifold learned by an LSTM Variational Autoencoder (VAE)⁵
 - Auto-encoders encode data onto a lower dimensional latent space and decode them into the original sample
 - Variational autoencoders encode data into probability distributions \rightarrow better for generation
 - LSTMs to deal with sequential character



Manifold Learning Advantage

- We project the adversarial example to the data manifold \rightarrow natural
- For both classes separately
 - \rightarrow adhere to label invariance

Adversarial Attacks on Manifold

- Because we adhere to label invariance
 - Attacks on the activity type
 - Attacks on resource attribute

- Successful attack
 - Original prediction was correct
 - Perturbed example is incorrectly predicted
 - Label is unchanged after perturbation

Successful adversarial attacks

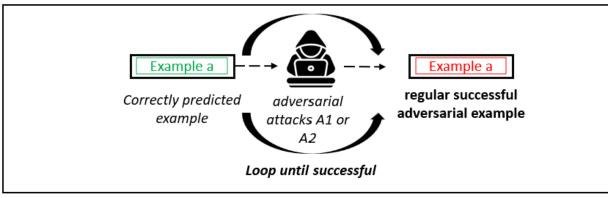
RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)

A <u>successful</u> adversarial example \tilde{x} is a perturbed version of a regular example x with label y such that:

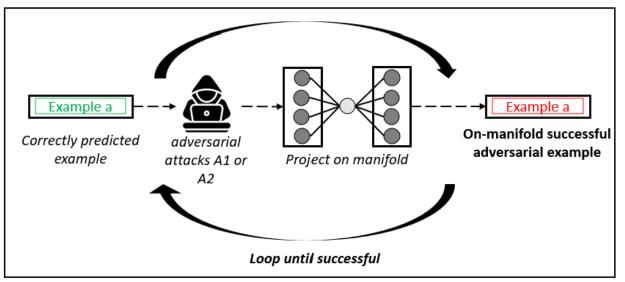
General definition
ptively indistinguishable instances
the original prediction was correct
urbed example incorrectly predicted
el is unchanged after perturbations

Manifold Learning for Adversarial Robustness in Predictive Process Monitoring

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)



(a) Regular successful adversarial examples



(b) On-manifold successful adversarial examples

Regular successful adversarial examples

- 1. Generate adversarial examples
- 2. Verify whether they are successful

On-manifold successful adversarial examples

- 1. Generate adversarial examples
- 2. Project the adversarial examples with a VAE to the manifold
- 3. Verify whether they are successful

Types of Attacks

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)

• Two different attacks

- A1 only the last event of the prefix
- A2 all events of the prefix

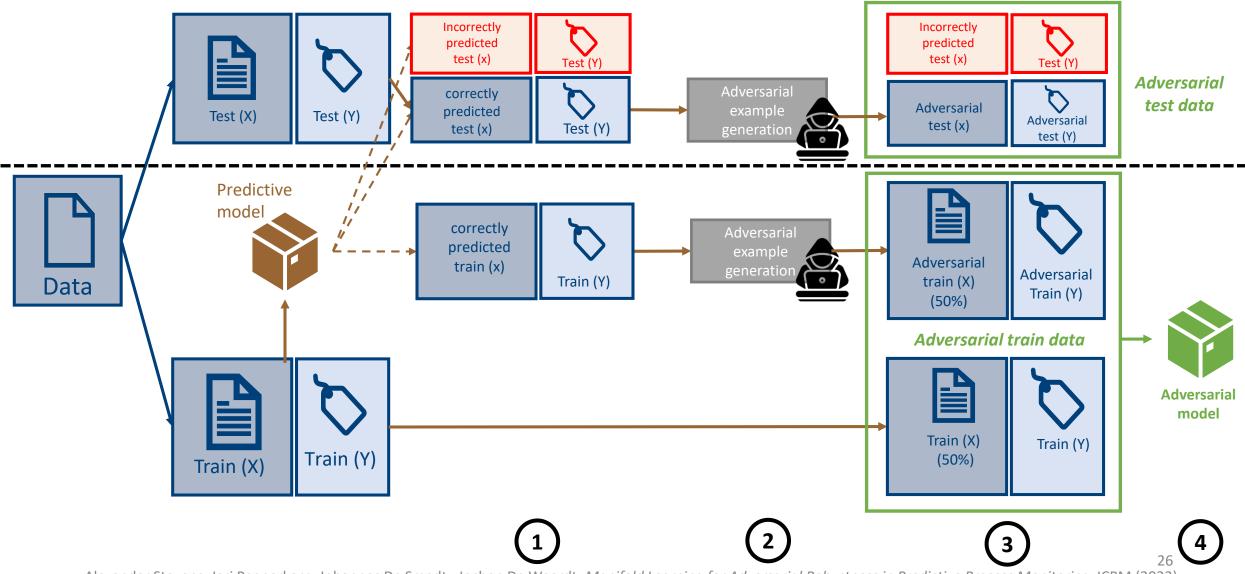
• On two different features

- Activity type
- Resource

Manifold Learning for Adversarial Robustness in Predictive Process Monitoring

KU LEUVEN

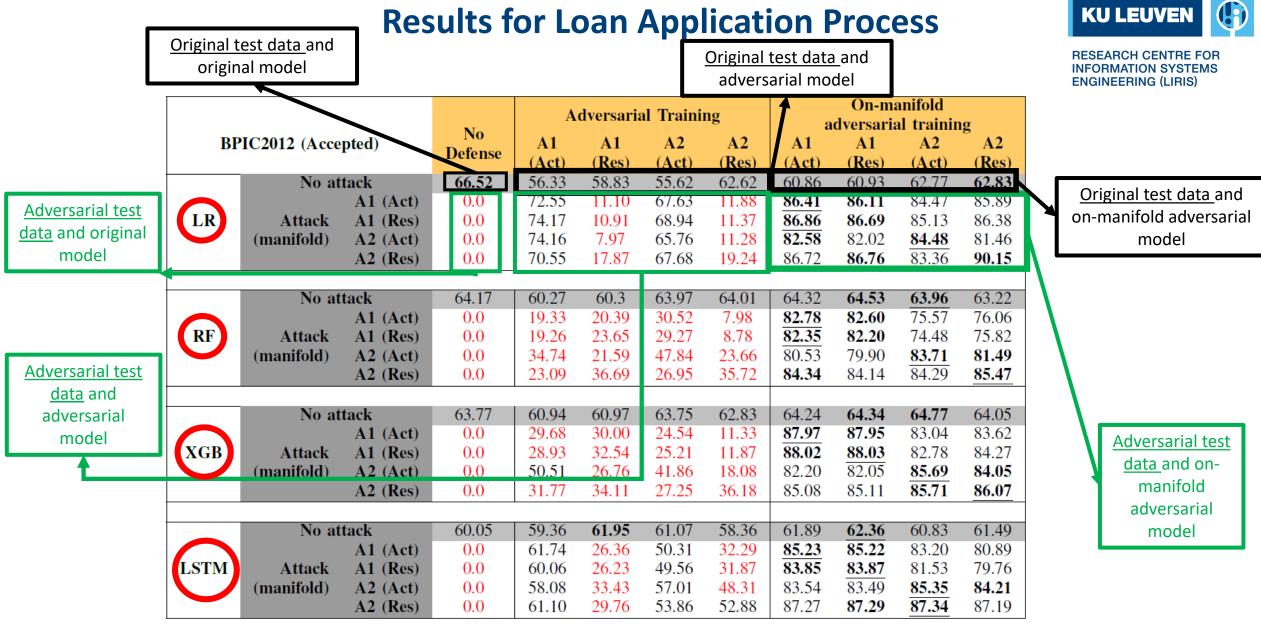
RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)



Experimental Setup

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)

- We tested 4 different types of predictive models
 - Logistic Regression
 - Random Forests
 - XGBoost
 - LSTM
- 5 different test sets
 - Original \rightarrow predictive performance
 - A1 & A2; Activity & Resource **on manifold** → robustness against attacks
- 9 different training logs
 - Original
 - A1 & A2; Activity & Resource simply permuted
 - A1 & A2; Activity & Resource on manifold



Conclusion

- The worst-case scenarios (A1 and A2 successful adversarial attacks) show that the models can theoretically be extremely incompetent
- Manifold learning allows for more natural adversarial attacks and overcomes the label invariance assumption
- On-manifold adversarial training works as a defence mechanism
- On-manifold adversarial training is still accurate on unseen, new test data

Future Work

- Explore more diverse attack scenarios and adversarial training techniques
- Test possibilities of the autoencoders and manifolds
 - Counterfactual explanation generation
 - Clustering
 - Calculating overlap to compare classes/logs

Appendix A: Reference List

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)

[1] Molnar, C. (2020). Interpretable machine learning. Lulu. com.

[2] Figure: NIPS 2018 Adversarial Vision Challenge

[3] Stevens, A., De Smedt, J., Peeperkorn, J., & De Weerdt, J. (2022, October). Assessing the Robustness in Predictive Process Monitoring through Adversarial Attacks. In *2022 4th International Conference on Process Mining (ICPM)* (pp. 56-63). IEEE.

[4] Stutz, D., Hein, M., & Schiele, B. (2019). Disentangling adversarial robustness and generalization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 6976-6987).

[5] https://wizardforcel.gitbooks.io/tensorflow-examples-aymericdamien/content/3.10_variational_autoencoder.html

RESEARCH CENTRE FOR INFORMATION SYSTEMS ENGINEERING (LIRIS)

Research interests:

- Trustworthy AI:
 - Explainable AI (Metrics), Counterfactuals
 - Fairness, Bias Mitigation
 - Robustness, (Variational) Autoencoders

Thank you for your attention!

