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S ﬂ Images as toy example to

(small) adversarial perturbation make it more visual

created by attack

Small perturbation causes the model to make a false prediction”*?

Molnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable (2nd ed.). christophm.github.io/interpretable-ml-book/
2Figure: NIPS 2018 Adversarial Vision Challenge



Introduction to Adversarial Machine Learning m @

RESEARCH CENTRE FOR
INFORMATION SYSTEMS
ENGINEERING (LIRIS)

SERSESRY

Test (X) Test (Y) Prediction

2
|
|
|
|
|
|

" NEID-$

Train (X) Train (Y)

Predictive
model

6

Alexander Stevens, Jari Peeperkorn, Johannes De Smedt, Jochen De Weerdt. Manifold Learning for Adversarial Robustness in Predictive Process Monitoring. ICPM (2023)



Introduction to Adversarial Machine Learning m @

RESEARCH CENTRE FOR
INFORMATION SYSTEMS
ENGINEERING (LIRIS)

SERSESRY

Test (X) Test (Y) Prediction

2
|
|
|
|
|
|

Data

BAID| &

Train (X) + noise |l Train (Y)

Predictive
model

7

Alexander Stevens, Jari Peeperkorn, Johannes De Smedt, Jochen De Weerdt. Manifold Learning for Adversarial Robustness in Predictive Process Monitoring. ICPM (2023)



Introduction to Adversarial Machine Learning m ‘

=

>

O

Data

Test (X) Test (Y) Prediction
2
|
|
|
|
|
|
. >
. \ — .’
Train (X) + noise |l Train (Y)

Predictive
model

RESEARCH CENTRE FOR
INFORMATION SYSTEMS
ENGINEERING (LIRIS)

8

Alexander Stevens, Jari Peeperkorn, Johannes De Smedt, Jochen De Weerdt. Manifold Learning for Adversarial Robustness in Predictive Process Monitoring. ICPM (2023)

"
(3

-

N



Introduction to Adversarial Machine Learning m )

RESEARCH CENTRE FOR
INFORMATION SYSTEMS
ENGINEERING (LIRIS)

SERSERRS

Did the prediction
Test (X) Test (Y) Prediction

change?

2
|
|
|
|
|
|

T\ BN DL S

Train (X) + noise |l Train (Y)

Predictive
model

9
Alexander Stevens, Jari Peeperkorn, Johannes De Smedt, Jochen De Weerdt. Manifold Learning for Adversarial Robustness in Predictive Process Monitoring. ICPM (2023)



Introduction to (Outcome-Oriented) Predictive m (
Process Monitoring

Test (X)

>

Test (Y)

O

Prediction

Event log

Alexander Stevens, Jari Peeperkorn, Johannes De Smedt, Jochen De Weerdt. Manifold Learning for Adversarial Robustness in Predictive Process Monitoring. ICPM (2023)

=

Train (X)

O

Train (Y)

2
|
|
|
|
|
|

-\
Predictive
model

Outcome-oriented predictive process monitoring

Process data (i.e. an event log) contains different cases

=» Each case has:

A timestamped records of events
* Activities
e Other dynamic attributes

A Case ID

Static attributes
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Well-known metrics:

Binary Classification:

Accuracy, Precision, Recall, F1-score,
AUC-ROC (AUC-PRC)
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Dynamic Dynamic Last Event Attack (A1)

Activity attributes | attributes (a)
E * Permuting dynamic attribute of the last
D=1 E D=1 event of the prefix
A D,=3 - D,=3
D,=8 E D,=8 v Intuitive
\ E v" Model is still able to learn correct
D,=2 E D=2 behaviour of the attribute
B D,=9 : D,=9
D,=1 i D,=1
I
D o7 —— -+ — —
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Dynamic Dynamic All Event Attack (A2)

Activit
Ity attributes | attributes (a)
1
! * Permuting dynamic attribute of all the
|
D,=1 ! = events of the sequence
A o3 —— -+ — G
1 .
D,=8 : D=4 X Model is not able anymore to learn correct
E behaviour of attributes
D,=2 ! D=5 X Boils down to pure noise attribute values
|
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3Stevens, A., De Smedlt, J., Peeperkorn, J., & De Weerdt, J. (2022, October). Assessing the Robustness in Predictive Process Monitoring through Adversarial Attacks. In 2022 4th International Conference on Process Mining (ICPM) (pp. 56-
63). IEEE.
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 Random perturbations can be unnatural®

Height (cm) Weight (kg) BMI Label
160 50 19.53 Healthy —
175 85 27.76 Overweight
155 45 18.73 Healthy \
185 95 27.76 Overweight
\ 4
Height (cm) Weight (kg) BMI Label

160 50 Healthy

BMI of 50 is still within range, but is not
realistic (nor correct)

4Stutz, D., Hein, M., & Schiele, B. (2019). Disentangling adversarial robustness and generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 16
Recognition (pp. 6976-6987).
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* No guarantee that underlying label of the instance after the adversarial attack
did not change

Height (cm) Weight (kg) BMI Label
160 50 19.53 Healthy —
175 85 27.76 Overweight
155 45 18.73 Healthy \
185 95 27.76 Overweight
\ 4
Height (cm) Weight (kg) BMI Label

160 50 50 COverweight)D

An BMI of 50 is classified as overweight

4Stutz, D., Hein, M., & Schiele, B. (2019). Disentangling adversarial robustness and generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 17
Recognition (pp. 6976-6987).
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Limitations of previous work

* No defence mechanism against these adversarial attacks
* Only tested their inherent vulnerability against these attacks
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regular adversarial examples vs. natural adversarial examples?

(a) regular

adversarial example .
on-manifold

(b) adversarial example

Classifier’s
Decision
Boundary

invalid
adversarial example

(c)

True
Decision

Boundary Class Manifold “6”

Class Manifold “5”

ﬁ Images as toy example to
make it more visual

4Stutz, D., Hein, M., & Schiele, B. (2019). Disentangling adversarial robustness and generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 19

Recognition (pp. 6976-6987).
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* The adversarial examples should lie within the distribution of the original data

manifold learned by an LSTM Variational Autoencoder (VAE)>

* Auto-encoders encode data onto a lower dimensional latent space and decode them into the

original sample

* Variational autoencoders encode data into probability distributions - better for generation

e LSTMs to deal with sequential character

mean vector

A~

Encoder
Network

>

(conv)

sampled
latent_vector

»

e

standard deviation
vector

https://wizardforcel.gitbooks.io/tensorflow-examples-aymericdamien/content/3.10_variational_autoencoder.html

Decoder
Network

(deconv)

20
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Manifold Learning Advantage

* We project the adversarial example to the data manifold
— natural

* For both classes separately
— adhere to label invariance

21
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Adversarial Attacks on Manifold

* Because we adhere to label invariance

e Attacks on the activity type
e Attacks on resource attribute

* Successful attack
* Original prediction was correct
* Perturbed example is incorrectly predicted
* Label is unchanged after perturbation

22
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Successful adversarial attacks

A successful adversarial example @is a perturbed version of a reqular exampl@with label y such that:

General definition

52’ =x+ecxx perceptively indistinguishable instances
f(x) =Yy the original prediction was correct
f()“(f) * y perturbed example incorrectly predicted

~ I ~ 14 . s
p(yl.X) > p(y |X)Vy F V. label is unchanged after perturbations
23
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Regular successful adversarial

examples
1. Generate adversarial examples
2.  Verify whether they are successful

On-manifold successful adversarial

examples

1. Generate adversarial examples

2.  Project the adversarial examples with a
VAE to the manifold

3.  Verify whether they are successful

24
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Types of Attacks

e Two different attacks

* Al only the last event of the prefix
* A2 all events of the prefix

 On two different features
* Activity type
* Resource

25
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Experimental Setup

* We tested 4 different types of predictive models
* Logistic Regression
 Random Forests
* XGBoost
* LSTM

e 5 different test sets

* Original - predictive performance
Al & A2; Activity & Resource on manifold - robustness against attacks

e 9 different training logs
e Original
Al & A2; Activity & Resource simply permuted
Al & A2; Activity & Resource on manifold

27
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Original test data and
on-manifold adversarial
model

LI Al
fense
0.0 74.17 1091  68.94
0.0 74.16 7.97 65.76
0.0 70.55 1787 67.68
60.27 60.3 63.97
19.33  20.39 | 30.52
19.26  23.65 | 29.27
3474 2159 | 47.84
23.09  36.69 | 26.95
60.94  60.97 | 63.75
20.68  30.00 | 24.54
2803 3254 | 25.21
50512676 | 41.86
31.77 3411  27.25
50.36 6195 61.07 X . .
61.74 2636 5031 3229 | 8523 8522 8320 80.89
60.06 2623 4956  31.87 | 83.85 8387 8153 79.76
58.08 3343 5701 4831 | 8354 8349 8535 84.21
61.10 2976 5386 52.88 | 87.27 87.29 87.34 87.19

Adversarial test
data and on-
manifold
adversarial
model
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The worst-case scenarios (A1 and A2 successful adversarial attacks) show that
the models can theoretically be extremely incompetent

Manifold learning allows for more natural adversarial attacks and overcomes
the label invariance assumption

On-manifold adversarial training works as a defence mechanism

On-manifold adversarial training is still accurate on unseen, new test data
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Future Work

* Explore more diverse attack scenarios and adversarial training techniques

* Test possibilities of the autoencoders and manifolds
e Counterfactual explanation generation
* Clustering
 Calculating overlap to compare classes/logs

30
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