



#### **Runtime Integration of Machine Learning and Simulation for Business Processes**

Authors: Francesca Meneghello, Fondazione Bruno Kessler, Trento, Italy & Sapienza University, Rome, Italy

Chiara Di Francescomarino, University of Trento, Trento, Italy

Chiara Ghidini, Fondazione Bruno Kessler, Trento, Italy





#### **Context: Business Process Simulation**

Optimization

What-if scenarios

#### Analysis



Monitoring

**Process improvement** 

**Redesign process** 











#### **Alternative approach: Generative models**

- LSTM networks used to predict the activity of ● the next event in a case, its timestamp, and the resource/role associated to the event
- The approach has the ability to generate ۲ complete sequences from scratch by repeatedly predicting the subsequent event.



1 Discovering generative models from event logs: data-driven simulation vs deep learning, Manuel Camargo, Marlon Dumas, Oscar González-Rojas. (PeerJ Computer Science 2021)



## **Alternative approach: Generative models**

- LSTM networks used to predict the activity of ulletthe next event in a case, its timestamp, and the resource/role associated to the event
- The approach has the ability to generate lacksquarecomplete sequences from scratch by repeatedly predicting the subsequent event.





Able to consider the features of the context/ scenario for prediction



Not suitable for what-if scenarios

Not global view, only on the single trace



1 Discovering generative models from event logs: data-driven simulation vs deep learning, Manuel Camargo, Marlon Dumas, Oscar González-Rojas. (PeerJ Computer Science 2021)



#### Hybrid Simulation: the Idea

Simulation model



#### Hybrid Simulation: the Idea

Simulation model







#### Hybrid Simulation: State of the Art



Learning Accurate Business Process Simulation Models from Event Logs via Automated Process Discovery and Deep Learning, Manuel Camargo, Marlon Dumas, Oscar González-Rojas. (CAISE 2022)

#### Simulated Log



#### Simulated Log

















## **Problems with Post-integration**







## **Problems with Post-integration**























Simulation model



Predictive model









Simulation model

Predictive model











Simulation model

Predictive model



#### **RIMS: Runtime Integration of Machine Learning and Simulation for Business Processes**





Predictive models for time perspective

Data Driven Process Simulation (DDPS) approach

#### **RIMS receipt**



- 1 Definition of the DDPS elements
- 2 Training of the predictive models
- 3 Integration and run simulation

#### **Definition of the DDPS elements** 1



#### **Training predictive models** 2



Time series to predict the trace start times

Predictive model for Waiting time:



- 1) Next activity
- 2) End timestamp of the current activity
- 3) Intercase features: WIP(work-in-progress) and resources' occupation



Predictive model for Processing Time:

- 1) Current activity
- 2) Start timestamp of the current activity
- 3) Intercase features: WIP(work-in-progress) and resources' occupation







Rojas. (CAISE 2022)













2



2























#### How does RIMS perform in terms of simulation quality compared to other techniques?



![](_page_39_Figure_2.jpeg)

#### **Evaluation: Procedure**

![](_page_40_Figure_1.jpeg)

- 25 simulations for each simulation approach
- MAE (Mean Absolute Error) of cycle times
- EMD (Earth Mover's Distance) of the normalized histograms of activity timestamps grouped by day and hour

#### **Evaluation: Datasets**

| Log                     | Туре | #Traces | #Events | #Activity | Avg. Trace<br>length |
|-------------------------|------|---------|---------|-----------|----------------------|
| <u>Confidential1000</u> | Syn  | 800     | 21221   | 29        | 26.53                |
| Confidential2000        | Syn  | 1670    | 44373   | 29        | 26.57                |
| <u>Cvs Pharmacy</u>     | Syn  | 10000   | 103906  | 15        | 10.39                |
| Purchasing Example      | Syn  | 608     | 9119    | 21        | 15                   |
| <u>SynLoan</u>          | Syn  | 2000    | 43164   | 25        | 39                   |
| Production              | Real | 225     | 4503    | 24        | 20                   |
| ConsultaDataMining      | Real | 954     | 4962    | 16        | 5.2                  |
| BPI12W                  | Real | 8616    | 59302   | 6         | 6.88                 |
| BPI17W                  | Real | 30276   | 240854  | 8         | 7.96                 |

#### **Evaluation RIMS: MAE metric**

|                                                      | DDPS                                 |                                      |                                      |                                             | LSTM                                        |                                             |                                            | Dsim                                |                                     |                                                    | RIMS                                              |                  |  |
|------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------------|---------------------------------------------------|------------------|--|
|                                                      | Mean                                 | $CI_l$                               | $CI_u$                               | Mean                                        | $CI_l$                                      | $CI_u$                                      | Mean                                       | $CI_l$                              | $CI_u$                              | Mean                                               | $CI_l$                                            |                  |  |
| Confidential 1000<br>Confidential 2000               | 55477<br>234520                      | 51509<br>179570                      | 59444<br>289471                      | 32754<br>37344                              | 32377<br>37063                              | 33132<br>37625                              | 36337                                      | 35796<br>7309                       | 36878<br>8882                       | 26950<br>7385                                      | <b>25683</b> 6381                                 |                  |  |
| Cvs Pharmacy                                         | 1061957                              | 1061300                              | 1062613                              | 638665                                      | 637616                                      | 639714                                      | 137636                                     | 136104                              | 139168                              | 102950                                             | 101130                                            | 1                |  |
| PurchasingExample<br>SynLoan                         | 212/361 2295797                      | 2109665<br>2295579                   | 2145058<br>2296015                   | 1446177                                     | 1446177                                     | 1463812                                     | 1675036                                    | 1635297                             | 2287481<br>1714775                  | 2104676<br>1278782                                 | 2082360<br><b>1271133</b>                         | 21<br>12         |  |
| Production<br>ConsultaDataMining<br>BPI12W<br>BPI17W | 312153<br>274786<br>667139<br>952502 | 307036<br>271536<br>665889<br>949997 | 317270<br>278035<br>668389<br>955007 | 128942<br>343520<br><b>316642</b><br>757742 | 117516<br>343422<br><b>309766</b><br>653898 | 140368<br>343618<br><b>323517</b><br>861585 | <b>83700</b><br>230921<br>597090<br>417641 | 73572<br>228349<br>594860<br>416631 | 93828<br>233494<br>599320<br>418650 | 105988<br><b>155994</b><br>555094<br><b>393749</b> | 91713<br><b>141180</b><br>550135<br><b>391442</b> | 1<br>1<br>5<br>3 |  |

![](_page_42_Figure_2.jpeg)

#### **Evaluation RIMS: MAE metric**

|                    | DDPS    |         |         |         | LSTM    |         |         | Dsim    |         | RIMS    |         |      |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|
|                    | Mean    | $CI_l$  | $CI_u$  | Mean    | $CI_l$  | $CI_u$  | Mean    | $CI_l$  | $CI_u$  | Mean    | $CI_l$  | ,    |
| Confidential 1000  | 55477   | 51509   | 59444   | 32754   | 32377   | 33132   | 36337   | 35796   | 36878   | 26950   | 25683   | ;    |
| Confidential 2000  | 234520  | 179570  | 289471  | 37344   | 37063   | 37625   | 8095    | 7309    | 8882    | 7385    | 6381    |      |
| Čvs Pharmacy       | 1061957 | 1061300 | 1062613 | 638665  | 637616  | 639714  | 137636  | 136104  | 139168  | 102950  | 101130  | ) 1  |
| PurchasingExample  | 2127361 | 2109665 | 2145058 | 2299619 | 2294319 | 2304919 | 2280717 | 2273954 | 2287481 | 2104676 | 2082360 | ) 21 |
| SynLoan            | 2295797 | 2295579 | 2296015 | 1446177 | 1446177 | 1463812 | 1675036 | 1635297 | 1714775 | 1278782 | 1271133 | 3 12 |
| Production         | 312153  | 307036  | 317270  | 128942  | 117516  | 140368  | 83700   | 73572   | 93828   | 105988  | 91713   | ; 1  |
| ConsultaDataMining | 274786  | 271536  | 278035  | 343520  | 343422  | 343618  | 230921  | 228349  | 233494  | 155994  | 141180  | ) 1  |
| BPI12W             | 667139  | 665889  | 668389  | 316642  | 309766  | 323517  | 597090  | 594860  | 599320  | 555094  | 550135  | ; 5  |
| BPI17W             | 952502  | 949997  | 955007  | 757742  | 653898  | 861585  | 417641  | 416631  | 418650  | 393749  | 391442  | 3    |

![](_page_43_Figure_2.jpeg)

#### **Evaluation RIMS: MAE metric**

|                    | DDPS    |         |         |         | LSTM    |         |         | Dsim    |         |         | RIMS      |  |  |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|--|--|
|                    | Mean    | $CI_l$  | $CI_u$  | Mean    | $CI_l$  | $CI_u$  | Mean    | $CI_l$  | $CI_u$  | Mean    | $CI_l$    |  |  |
| Confidential 1000  | 55477   | 51509   | 59444   | 32754   | 32377   | 33132   | 36337   | 35796   | 36878   | 26950   | 25683     |  |  |
| Confidential 2000  | 234520  | 179570  | 289471  | 37344   | 37063   | 37625   | 8095    | 7309    | 8882    | 7385    | 6381      |  |  |
| Cvs Pharmacy       | 1061957 | 1061300 | 1062613 | 638665  | 637616  | 639714  | 137636  | 136104  | 139168  | 102950  | 101130    |  |  |
| PurchasingExample  | 2127361 | 2109665 | 2145058 | 2299619 | 2294319 | 2304919 | 2280717 | 2273954 | 2287481 | 2104676 | 2082360 2 |  |  |
| SynLoan            | 2295797 | 2295579 | 2296015 | 1446177 | 1446177 | 1463812 | 1675036 | 1635297 | 1714775 | 1278782 | 1271133 1 |  |  |
| Production         | 312153  | 307036  | 317270  | 128942  | 117516  | 140368  | 83700   | 73572   | 93828   | 105988  | 91713     |  |  |
| ConsultaDataMining | 274786  | 271536  | 278035  | 343520  | 343422  | 343618  | 230921  | 228349  | 233494  | 155994  | 141180    |  |  |
| BPI12W             | 667139  | 665889  | 668389  | 316642  | 309766  | 323517  | 597090  | 594860  | 599320  | 555094  | 550135    |  |  |
| BPI12W*            | 694558  | 694083  | 695033  | 316642  | 309766  | 323517  | 310293  | 304608  | 315977  | 357940  | 351301    |  |  |
| BPI17W             | 952502  | 949997  | 955007  | 757742  | 653898  | 861585  | 417641  | 416631  | 418650  | 393749  | 391442    |  |  |

![](_page_44_Figure_2.jpeg)

#### **Evaluation RIMS: EMD metric**

|                    | DDPS    |         |         |         | LSTM    |         |         | Dsim    |         |         | RIMS      |     |  |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|-----|--|
|                    | Mean    | $CI_l$  | $CI_u$  | Mean    | $CI_l$  | $CI_u$  | Mean    | $CI_l$  | $CI_u$  | Mean    | $CI_l$    |     |  |
| Confidential 1000  | 0.00115 | 0.00103 | 0.00127 | 0.01435 | 0.01434 | 0.01437 | 0.01269 | 0.01263 | 0.01274 | 0.01264 | 0.01257 0 | 0.0 |  |
| Confidential 2000  | 0.00109 | 0.00105 | 0.00113 | 0.00992 | 0.00991 | 0.00993 | 0.00897 | 0.00895 | 0.00899 | 0.00907 | 0.00905 0 | 0.0 |  |
| Cvs Pharmacy       | 0.00093 | 0.00092 | 0.00094 | 0.00237 | 0.00237 | 0.00237 | 0.00659 | 0.00658 | 0.00659 | 0.00672 | 0.00672 0 | 0.0 |  |
| PurchasingExample  | 0.00702 | 0.00699 | 0.00706 | 0.00525 | 0.00500 | 0.00550 | 0.00645 | 0.00634 | 0.00656 | 0.00856 | 0.00831 0 | 0.0 |  |
| SynLoan            | 0.00799 | 0.00798 | 0.00800 | 0.01926 | 0.01924 | 0.01928 | 0.00473 | 0.00469 | 0.00477 | 0.00321 | 0.00317 0 | .0  |  |
| Production         | 0.01486 | 0.01438 | 0.01534 | 0.00715 | 0.00647 | 0.00784 | 0.00635 | 0.00589 | 0.00680 | 0.00523 | 0.00487 0 | .0  |  |
| ConsultaDataMining | 0.01573 | 0.01555 | 0.01591 | 0.03830 | 0.03820 | 0.03840 | 0.01233 | 0.01202 | 0.01265 | 0.00777 | 0.00739 0 | .0  |  |
| BPI12W             | 0.00642 | 0.00640 | 0.00644 | 0.00766 | 0.00765 | 0.00768 | 0.00807 | 0.00806 | 0.00808 | 0.00805 | 0.00804 0 | 0.0 |  |
| BPI12W*            | 0.00468 | 0.00465 | 0.00470 | 0.00766 | 0.00765 | 0.00768 | 0.00799 | 0.00798 | 0.00799 | 0.00798 | 0.00798 0 | 0.0 |  |

![](_page_45_Picture_2.jpeg)

#### **Evaluation RIMS: EMD metric**

![](_page_46_Figure_1.jpeg)

| M                                         |                                                     | Dsim RIMS                                           |                                                     |                                                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|-------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| $CI_l$                                    | $CI_u$                                              | Mean                                                | $CI_l$                                              | $CI_u$                                              | Mean                                                | $CI_l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| 434 (<br>991 (<br>237 (<br><b>500 (</b>   | 0.01437<br>0.00993<br>0.00237<br>0.00550            | 0.01269<br>0.00897<br>0.00659<br>0.00645            | 0.01263<br>0.00895<br>0.00658<br>0.00634            | 0.01274<br>0.00899<br>0.00659<br>0.00656            | 0.01264<br>0.00907<br>0.00672<br>0.00856            | $0.01257 \ 0.00905 \ 0.00672 \ 0.00831 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00217 \ 0.00$ | ).0<br>).0<br>).0        |
| 924 (<br>547 (<br>320 (<br>765 (<br>765 ( | ).01928<br>).00784<br>).03840<br>).00768<br>).00768 | 0.00473<br>0.00635<br>0.01233<br>0.00807<br>0.00799 | 0.00469<br>0.00589<br>0.01202<br>0.00806<br>0.00798 | 0.00477<br>0.00680<br>0.01265<br>0.00808<br>0.00799 | 0.00321<br>0.00523<br>0.00777<br>0.00805<br>0.00798 | 0.00317 0<br>0.00487 0<br>0.00739 0<br>0.00804 0<br>0.00798 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ).0<br>).0<br>).0<br>).0 |

![](_page_46_Picture_3.jpeg)

#### **Evaluation RIMS: EMD metric**

![](_page_47_Figure_1.jpeg)

![](_page_48_Picture_0.jpeg)

#### The End??

#### What about the queue??

![](_page_49_Figure_1.jpeg)

![](_page_49_Picture_2.jpeg)

![](_page_49_Picture_4.jpeg)

#### What about the queue??

![](_page_50_Figure_1.jpeg)

![](_page_50_Picture_2.jpeg)

#### Enriched Simulated Log

#### Queue of Delivery Man Requests

![](_page_50_Picture_5.jpeg)

![](_page_50_Picture_6.jpeg)

#### What about the queue??

![](_page_51_Figure_1.jpeg)

![](_page_51_Picture_2.jpeg)

![](_page_51_Picture_4.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_0.jpeg)

- Definition of the DDPS elements
- Training of the predictive models: 2
  - 2a Retrieve the queue feature from the log
  - <sup>2b</sup> Train the waiting time predictive model with the queue feature
- 3 Integration and run simulation

#### 2a Retrieve the queue feature from the log

![](_page_54_Figure_1.jpeg)

#### Retrieve the queue feature from the log 2a

![](_page_55_Figure_1.jpeg)

**2b** 

#### Train the waiting time predictive model with the queue feature

## <sup>3</sup> **RIMS<sup>+</sup>: Integration and run simulation**

![](_page_56_Figure_1.jpeg)

![](_page_56_Figure_2.jpeg)

Predict Waiting time

## <sup>3</sup> **RIMS<sup>+</sup>: Integration and run simulation**

![](_page_57_Figure_1.jpeg)

![](_page_57_Figure_2.jpeg)

Predict Waiting time

## <sup>3</sup> **RIMS<sup>+</sup>: Integration and run simulation**

![](_page_58_Figure_1.jpeg)

# How does RIMS+ improve the quality of simulation compared to approaches that do not use the queue feature?

![](_page_59_Picture_1.jpeg)

![](_page_59_Picture_2.jpeg)

![](_page_59_Picture_3.jpeg)

#### **Evaluation: Procedure**

![](_page_60_Figure_1.jpeg)

- 25 simulations for each simulation approach
- MAE (Mean Absolute Error) of cycle times
- EMD (Earth Mover's Distance) of the normalized histograms of activity timestamps grouped by day and hour

#### **Evaluation: Datasets**

| Log                     | Туре | #Traces | #Events | #Activity | Avg. Trace<br>length | Queue mea |
|-------------------------|------|---------|---------|-----------|----------------------|-----------|
| <u>Confidential1000</u> | Syn  | 800     | 21221   | 29        | 26.53                | 9.91      |
| Confidential2000        | Syn  | 1670    | 44373   | 29        | 26.57                | 2.37      |
| <u>Cvs Pharmacy</u>     | Syn  | 10000   | 103906  | 15        | 10.39                | 59        |
| Purchasing Example      | Syn  | 608     | 9119    | 21        | 15                   | 0.30      |
| <u>SynLoan</u>          | Syn  | 2000    | 43164   | 25        | 39                   | 68.89     |
| Production              | Real | 225     | 4503    | 24        | 20                   | 1.17      |
| ConsultaDataMining      | Real | 954     | 4962    | 16        | 5.2                  | 0         |
| BPI12W                  | Real | 8616    | 59302   | 6         | 6.88                 | 1115      |
| BPI17W                  | Real | 30276   | 240854  | 8         | 7.96                 | 1646      |

![](_page_61_Figure_2.jpeg)

#### **Evaluation: Datasets**

|   | Log                     | Туре | <b>#Traces</b> | #Events | #Activity | Avg. Trace<br>length | Queue mea |
|---|-------------------------|------|----------------|---------|-----------|----------------------|-----------|
|   | <u>Confidential1000</u> | Syn  | 800            | 21221   | 29        | 26.53                | 9.91      |
|   | <u>Confidential2000</u> | Syn  | 1670           | 44373   | 29        | 26.57                | 2.37      |
|   | <u>Cvs Pharmacy</u>     | Syn  | 10000          | 103906  | 15        | 10.39                | 59        |
|   | Purchasing Example      | Syn  | 608            | 9119    | 21        | 15                   | 0.30      |
|   | <u>SynLoan</u>          | Syn  | 2000           | 43164   | 25        | 39                   | 68.89     |
| r | Production              | Real | 225            | 4503    | 24        | 20                   | 1.17      |
|   | ConsultaDataMining      | Real | 954            | 4962    | 16        | 5.2                  | 0         |
|   | BPI12W                  | Real | 8616           | 59302   | 6         | 6.88                 | 1115      |
|   | BPI17W                  | Real | 30276          | 240854  | 8         | 7.96                 | 1646      |

![](_page_62_Figure_2.jpeg)

#### **Evaluation RIMS+ vs Best**

|    |                   |         | Best    |         |         |
|----|-------------------|---------|---------|---------|---------|
|    |                   | Mean    | $CI_l$  | $CI_u$  | Mean    |
|    | Confidential 1000 | 26950   | 25683   | 28217   | 15489   |
|    | Cvs Pharmacy      | 102950  | 101130  | 104771  | 45756   |
| E  | SynLoan           | 1278782 | 1271133 | 1286430 | 827635  |
| MA | BPI12W            | 316642  | 309766  | 323517  | 454494  |
|    | BPI12W*           | 310293  | 304608  | 315977  | 301663  |
|    | BPI17W            | 393749  | 391442  | 396056  | 308038  |
|    | Confidential 1000 | 0.00115 | 0.00103 | 0.00127 | 0.01254 |
|    | Cvs Pharmacy      | 0.00093 | 0.00092 | 0.00094 | 0.00680 |
| 8  | SynLoan           | 0.00321 | 0.00317 | 0.00325 | 0.00576 |
| E  | BPI12W            | 0.00642 | 0.00640 | 0.00644 | 0.00813 |
|    | BPI12W*           | 0.00468 | 0.00465 | 0.00470 | 0.00799 |
|    | BPI17W            | 0.00448 | 0.00446 | 0.00449 | 0.00847 |

#### RIMS+

- $CI_u$  $CI_l$ 16208 14771 53583 37930 821431 833839 452008 456980 292720 310606 299884 316193 0.01247 0.01260 0.00679 0.00681
- 0.00571 0.00582
- 0.00812 0.00814
- 0.00797 0.00801
- 0.00798 0.00895

- RIMS<sup>+</sup>outperforms the best approach in MAE
- RIMS<sup>+</sup> worsens slightly in EMD

#### **RIMS vs RIMS+: the impact of queue**

![](_page_64_Figure_1.jpeg)

![](_page_64_Figure_2.jpeg)

6 Synthetic logs with different levels of queuing

![](_page_64_Picture_4.jpeg)

#### Conclusions

- New hybrid simulation approach
- **RIMS** and **RIMS**<sup>+</sup> outperform state of the art

Future work:

- Add the remaining perspectives
- Consider Resource Calendar
- Consider queue policies

## THANK YOU! Questions, doubts, thoughts?

Contact me: <u>fmeneghello@fbk.eu</u> Process & Data Intelligence group website: <u>https://pdi.fbk.eu/</u>

## THANK YOU! Questions, doubts, thoughts?

Contact me: <u>fmeneghello@fbk.eu</u> Process & Data Intelligence group website: <u>https://pdi.fbk.eu/</u>

![](_page_67_Picture_2.jpeg)