Stochastically Known Logs

Avigdor Gal Faculty of Data & Decision Sciences Technion - Israel Institute of Technology

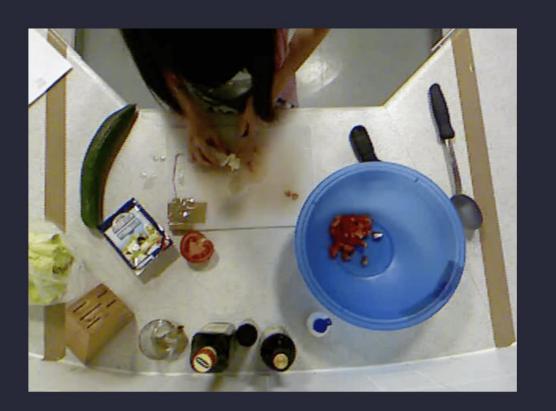
The Machine Take on Things

Activity:	Probability:		
cut tomato	0.985865890979767		
place tomato into bowl	0.001719345338642		
cut cheese	0.001066825352609		
place cheese into bowl	0.000305395515169		
cut lettuce	0.001498936209827		
place lettuce into bowl	0.001265937229618		
add salt	0.000643466948531		
add vinegar	0.000421878445195		
add oil	0.000514703569933		
add pepper	0.000278713559964		
mix dressing	0.000701764482073		
peel cucumber	0.001680406741797		
cut cucumber	0.001444676774553		
place cucumber into bowl	0.000844917609356		
add dressing	0.000099478624179		
mix ingredients	0.000290632800897		
serve salad onto plate	0.000585296249482		
action start	0.000403055601054		
action end	0.000426040351158		

Probability Matrix

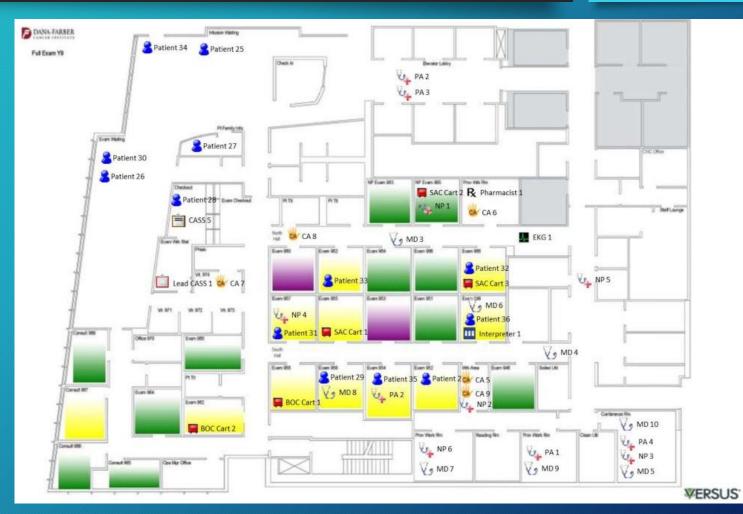
The Machine Take on Things

	22
Activity:	Probability:
cut tomato	0.000746908364817
place tomato into bowl	0.978379130363464
cut cheese	0.013481707312166
place cheese into bowl	0.002500118222087
cut lettuce	0.000429154810262
place lettuce into bowl	0.000841871835291
add salt	0.000176695175468
add vinegar	0.000058818597608
add oil	0.000225453026359
add pepper	0.000063816609326
mix dressing	0.000139173775096
peel cucumber	0.000314782402710
cut cucumber	0.000063691848481
place cucumber into bowl	0.001546724932268
add dressing	0.000094073184300
mix ingredients	0.000636578071862
serve salad onto plate	0.000048261339543
action start	0.000190068763913
action end	0.000062905768572


Probability Matrix

The Machine Take on Things

Activity:	Probability:			
cut tomato	0.001080020447261			
place tomato into bowl	0.000175809327629			
cut cheese	0.001415886450558			
place cheese into bowl	0.001077939290553			
cut lettuce	0.001069346326403			
place lettuce into bowl	0.000403379293857			
add salt	0.000438968272646			
add vinegar	0.000169044331414			
add oil	0.000078853277955			
add pepper	0.000394722184864			
mix dressing	0.000266276270849			
peel cucumber	0.001459960942156			
cut cucumber	0.989480376243591			
place cucumber into bowl	0.000937769480515			
add dressing	0.000688925210852			
mix ingredients	0.000044181284465			
serve salad onto plate	0.000254837796092			
action start	0.000341792212566			
action end	0.000221899870666			


Probability Matrix

One More Example for the Road

A. Senderovich, A. Rogge-Solti, A. Gal, J. Mendling, and A. Mandelbaum, "The road from sensor data to process instances via interaction mining," in Advanced Information Systems Engineering, S. Nurcan, P. Soffer, M. Bajec, and J. Eder, Eds. Cham: Springer International Publishing, 2016, pp. 257-273.

What's Stochastic in Stochastic Processes?

$\mathbf{Model} \ \mathbf{(Data \ set)} \rightarrow$	Single process		Multiple processes	
$\downarrow \mathbf{Observation} \ (\mathbf{Log})$	DK	\mathbf{SK}	DK	\mathbf{SK}
Deterministically Known (DK)	1	2	3	4
Stochastically Known (SK)	5	6	7	8

I. Cohen and A. Gal, "Uncertain process data with probabilistic knowledge: Problem characterization and challenges," Proceedings of the International Workshop Problems21, collocated with the 19th International Conference on Business Process Management BPM 2021, Italy, published in CEUR Workshop Proceedings, vol. 2938, pp. 51-56, 2021.

Stochastic Logs: what does it Mean?

Case ID	Event ID	Activity	Timestamp	Event Probability	Process
1	e1	{a:0.5, b:0.5}	11-06-2020T00:00	0.8	{P1:0.8, P2:0.2}
1	e2	{a:0.3, b:0.7}	[12-06-2020T13:52 12-06-2020T14:14]	0.5	{P1:0.8, P2:0.2}
1	e₃	{a:0.2, b:0.3, c:0.5}	13-06-2020T15:39	0.3	{P1:0.8, P2:0.2}
2	e4	{c:1.0}	15-06-2020T11:23	0.7	{P3:1.0}
2	e₅	{d:1.0}	15-06-2020T11:25	0.2	{P3:1.0}

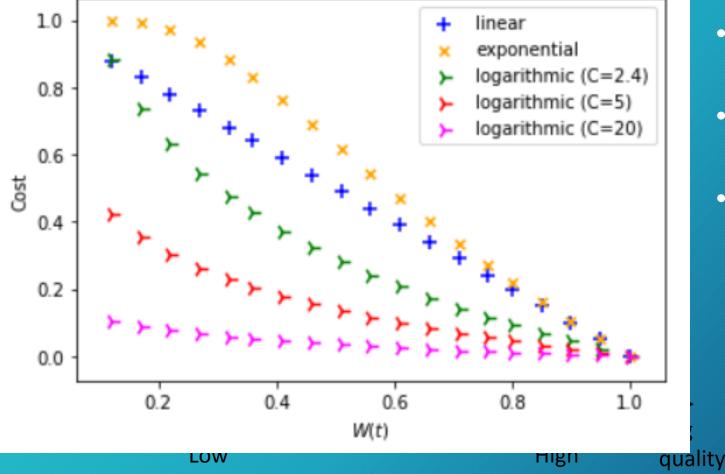
Probabilistic Databases

- Tuple-level semantics
- Attribute-level semantics:
 - Independence selection of values from a distribution.
- Possible world semantics:
 - The likelihood of each possible world is given by the product of marginal probabilities of tuples' selections.
- More complex models exist

M. Weidlich, "Database systems and process management - a call for a closer look," in Business Process Management - 21st International Conference, BPM 2023, Utrecht, The Netherlands, September 11-15, 2023, Proceedings, ser. Lecture Notes in Computer Science, C. D. Francescomarino, A. Burattin, C. Janiesch, and S. Sadiq, Eds., vol. 14159. Springer, 2023. [Online]. Available: https://doi.org/10.1007/978-3-031-41620-0

11101001001110100100010001000100010001	000011001	0000101000101010	
A quick illustration	Case ID 1 1 1 1 1	$\begin{array}{c} \textbf{Activity} \\ \{(A, 0.5), (B, 0.5)\} \\ \{(A, 0.4), (B, 0.2), (D, 0) \\ \{(E, 0.5), (F, 0.5)\} \end{array}$	
$A \qquad 0.2 \qquad E \qquad 0.11 \\ B \qquad 0.2 \qquad 0.3 \qquad 0.11 \\ 111 \qquad 0.11 \\ 1111 \\ 111 \qquad 0.11 \\ 111 \qquad 0.11 \\ 111 \qquad 0.11 \\ 111 $	00001100	01010101101101 110101000001 11010001100 Values	Probability
0.4 0.5 D 0.5 0 0 0 0 0 0 0 0	$\begin{aligned} S(e_1) &= A, \\ S(e_1) &= A, \end{aligned}$	$S(e_{2}) = B, S(e_{3}) = E$ $S(e_{2}) = B, S(e_{3}) = F$ $S(e_{2}) = A, S(e_{3}) = E$ $S(e_{2}) = A, S(e_{3}) = F$	$0.5 \cdot 0.2 \cdot 0.5 = 0.05$ $0.5 \cdot 0.2 \cdot 0.5 = 0.05$ $0.5 \cdot 0.4 \cdot 0.5 = 0.1$ $0.5 \cdot 0.4 \cdot 0.5 = 0.1$
	$S(e_1) = A, I$ $S(e_1) = A, I$ $S(e_1) = B, I$ $S(e_1) = B, I$	$S(e_2) = A, S(e_3) = F$ $S(e_2) = D, S(e_3) = E$ $S(e_2) = D, S(e_3) = F$ $S(e_2) = B, S(e_3) = E$ $S(e_2) = B, S(e_3) = F$ $S(e_2) = A, S(e_3) = E$	$\begin{array}{c} 0.5 \cdot 0.4 \cdot 0.5 = 0.1 \\ 0.5 \cdot 0.4 \cdot 0.5 = 0.1 \\ 0.5 \cdot 0.4 \cdot 0.5 = 0.1 \\ 0.5 \cdot 0.2 \cdot 0.5 = 0.05 \\ 0.5 \cdot 0.2 \cdot 0.5 = 0.05 \\ 0.5 \cdot 0.4 \cdot 0.5 = 0.1 \end{array}$
10001100010000101000001111010	$S(e_1) = B,$ $S(e_1) = B,$ $S(e_1) = B,$ $S(e_1) = B,$	$S(e_{2}) = A, S(e_{3}) = F$ $S(e_{2}) = D, S(e_{3}) = E$ $S(e_{2}) = D, S(e_{3}) = F$	$0.5 \cdot 0.4 \cdot 0.5 = 0.1 \\ 0.5 \cdot 0.4 \cdot 0.5 = 0.1$

Probabilistic Databases: a Model for Stochastic Logs


- Log as a probabilistic relation
- Possible world semantics assists in creating deterministic logs from stochastic ones:
 - What's the motivation?
 - Pros and Cons
- Independence assumptions:
 - Activity independence?
 - Trace independence?

What are my options?

Encapsulate

Expose

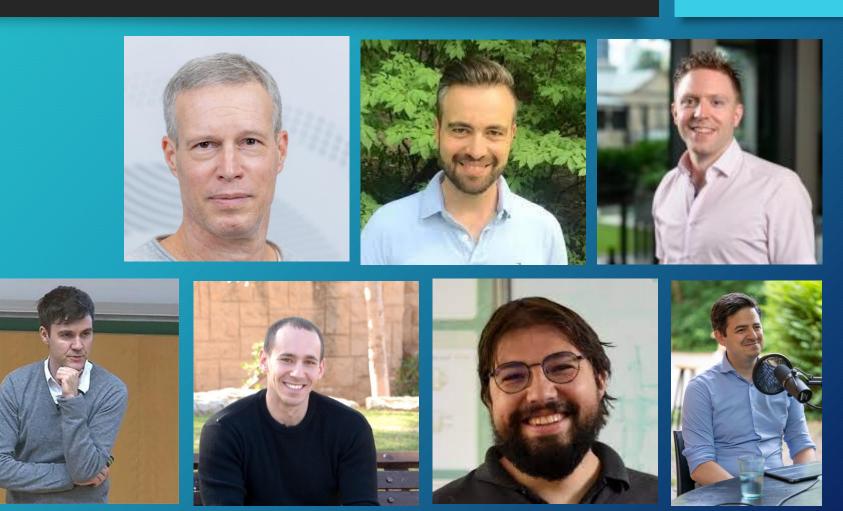
Stochastic Log Encapsulation

- Stochastic on the inside, deterministic on the outside
- Trace Recovery from Stochastically Known Logs
- Attend the "Fresh View on Process Data" session at 16:00

Stochastic Log Exposure: the Selection Game

- Recall possible worlds
- The right log for the job
- Top-K logs:
 - a ranked list of the K logs with the highest probabilities.
 - Recursive definition:
 - the top ranked log is a log with the highest probability
 - i-th highest ranked log is the top ranked log that is different from the i – 1 logs that preceded it in at least one element
 - What's the point in having top-K logs?
 - Computation

Encapsulate or Expose: Pros and Cons


	Encapsulate	Expose
Informativeness		$\mathbf{\uparrow}$
Back compatibility		
Computation	=	=
Complexity		
End-user orientation		-

Challenges

- Are all uncertatinties born equal? Should we treat sensor limited accuracy similarly to machine learning prediction indecisiveness?
- Probabilistic information acquisition
- End user stochastic orientation
- Data dependencies?
- Other representations: fuzzy set theory
- Performance: # possible worlds explode

Final notes

• Growing interest

