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Data-aware process mining with reasoning
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guards/decision 
mining

modelling
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repair



Data Petri Nets
[Mannhardt,PhD2018; _____,ER2018; _____,ACSD2019]

• Petri nets enriched with typed variables 
(ranging over infinite domains)


• Transitions access variables via read and 
write guards


• State: marking + variable assignment

• Transition firing: usual firing semantics + 

variable assignment update given a binding 
for the written variables

Infinite reachability graph even when the net is bounded

Possibility of reasoning depends on the guard language



Fragile setting: undecidability around the corner!



Goal
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DPN  

N
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data-aware sound DPN 
“minimally adapted” 

from N

Data-aware soundness 
checks: using 

[____,CAiSE 2022]
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2.Guard language in a fragment 
where soundness can be 
checked [____,CAiSE 2022]      
E.g.: variable-to-constant guards

3.Does not modify control 
structure, only guards



The two views of a process model…
… and what “minimality” means!

process 
model

…
infinitely many traces

a picture

process representation

process behaviors

Minimal number of 
interventions on 

guards 
[Zavatteri et al., FM-BPM 2023]

Our approach: 
minimal impact on 

behavior 
We only impact traces leading 

to a blocked state



control-flow 
infrastructure: sound!
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Extract formula 



capturing exactly 
those runs that     

get stuck

φblocked

constraint graph

Symbolic representation of 
reachable states
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Termination guaranteed  for DPNs using 
variable-to-constant guards


Can be applied to 

general DPNs, 


but may not terminate
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dr = 1 ∨ (dr > 0 ∧ dr ≠ 0 ∧ dr ≠ 1)
≡

dr > 0



Fully implemented: soundness.adatool.dev



Experiments
Repair of unsound DPNs 

Conformance checking (road fines example)
Repair does not 

affect conformance 
negatively

Extension 
takes more 
time (larger 
constraint 

graphs)



Conclusions

Take home

• Need of soundness repair in data-aware process mining 
• SMT-based automatic repair for DPNs that is conservative on 

the control-flow and on the original behavior

• Two repair directions: restrict or extend

• Fully implemented 

 Next steps

• Blending of restriction and extension, user-in-the-loop

• Log-driven data-aware repairs
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