
Repairing
soundness
properties
in
data-aware
processes
Paolo Felli, Marco
Montali, Sarah Winkler

ICPM 2023
Rome, Italy

Starting point
A holistic view of information systems

dynamic constraints

process model

event log

Starting point
A holistic view of information systems

dynamic constraints

process model

event log

conventional

process mining

Starting point
A holistic view of information systems

data dynamics
event log

process model

Starting point
A holistic view of information systems

event log

process model
data-aware/object-centric

process mining

data dynamics

Starting point
A holistic view of information systems

event log

process model
data-aware/object-centric

process mining
need of combining mining

and reasoning

data dynamics

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay

Send to
prefecture

Result
prefectureNotify

Collect
credit

Add
penalty

Why reasoning?
Adapted from [Mannhardt et al., Comput. 2016], studied in [____,CAiSE2022]

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay

Send to
prefecture

Result
prefectureNotify

Collect
credit

Add
penalty

amount total
amount

dismissal
code

points
deducted

expenses ds dp dj

Why reasoning?
Adapted from [Mannhardt et al., Comput. 2016], studied in [____,CAiSE2022]

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay

Send to
prefecture

Result
prefectureNotify

Collect
credit

Add
penalty

amount total
amount

dismissal
code

points
deducted

expenses ds dp djdj

x

xw xr

Why reasoning?
Adapted from [Mannhardt et al., Comput. 2016], studied in [____,CAiSE2022]

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay

Send to
prefecture

Result
prefectureNotify

Collect
credit

Add
penalty

aw, tw, dw, pw ≥ 0

pw ≥ 0

0 ≤ dsw ≤ 90days ∧ ew ≥ 0

pw ≥ 0 pw ≥ 0 aw ≥ 0

tr ≥ ar + erdr ≠ 0 ∨ (pr = 0 ∧ tr ≥ ar) tr <
ar

+ er

tr ≥ ar + er

0 ≤ djw ≤ 60days ∧ dw ≥ 0

d r
=

0

dr = 2

0 ≤ dpw ≤ 60days dw ≥ 0 dr = 0

dr = 1

amount total
amount

dismissal
code

points
deducted

expenses ds dp dj

Why reasoning?
Adapted from [Mannhardt et al., Comput. 2016], studied in [____,CAiSE2022]

(multi-perspective) mining modelling

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay Notify

Collect
credit

Add
penalty

aw, tw, dw, pw ≥ 0

pw ≥ 0

0 ≤ dsw ≤ 90days ∧ ew ≥ 0

pw ≥ 0 pw ≥ 0 aw ≥ 0

tr ≥ ar + erdr ≠ 0 ∨ (pr = 0 ∧ tr ≥ ar) tr <
ar

+ er

tr ≥ ar + er

0 ≤ djw ≤ 60days ∧ dw ≥ 0

d r
=

0

dr = 2

0 ≤ dpw ≤ 60days

Is the model “correct”?

Send to
prefecture

Result
prefecture

dw ≥ 0 dr = 0

dr = 1

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay Notify

Collect
credit

Add
penalty

aw, tw, dw, pw ≥ 0

pw ≥ 0

0 ≤ dsw ≤ 90days ∧ ew ≥ 0

pw ≥ 0 pw ≥ 0 aw ≥ 0

tr ≥ ar + erdr ≠ 0 ∨ (pr = 0 ∧ tr ≥ ar) tr <
ar

+ er

tr ≥ ar + er

0 ≤ djw ≤ 60days ∧ dw ≥ 0

d r
=

0

dr = 2

0 ≤ dpw ≤ 60days

Is the model “correct”?

Send to
prefecture

Result
prefecture

dw ≥ 0 dr = 0

dr = 1

The control-flow way

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay Notify

Collect
credit

Add
penalty

Is the model “correct”?

Send to
prefecture

Result
prefecture

1. Strip-off the data
2. Encode control-flow into bounded Petri net (finite state-space)
3. Explore the state space

The control-flow way

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay Notify

Collect
credit

Add
penalty

Is the model “correct”?

Send to
prefecture

Result
prefecture

1. Strip-off the data
2. Encode control-flow into bounded Petri net (finite state-space)
3. Explore the state space

The control-flow way

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay Notify

Collect
credit

Add
penalty

Is the model “correct”?

Send to
prefecture

Result
prefecture

1. Strip-off the data
2. Encode control-flow into bounded Petri net (finite state-space)
3. Explore the state space

The control-flow way

Verdict: all good!

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay Notify

Collect
credit

Add
penalty

aw, tw, dw, pw ≥ 0

pw ≥ 0

0 ≤ dsw ≤ 90days ∧ ew ≥ 0

pw ≥ 0 pw ≥ 0 aw ≥ 0

tr ≥ ar + erdr ≠ 0 ∨ (pr = 0 ∧ tr ≥ ar) tr <
ar

+ er

tr ≥ ar + er

0 ≤ djw ≤ 60days ∧ dw ≥ 0

d r
=

0

dr = 2

0 ≤ dpw ≤ 60days

Is the model “correct”?

Send to
prefecture

Result
prefecture

dw ≥ 0 dr = 0

dr = 1

The integrated way

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay Notify

Collect
credit

Add
penalty

aw, tw, dw, pw ≥ 0

pw ≥ 0

0 ≤ dsw ≤ 90days ∧ ew ≥ 0

pw ≥ 0 pw ≥ 0 aw ≥ 0

tr ≥ ar + erdr ≠ 0 ∨ (pr = 0 ∧ tr ≥ ar) tr <
ar

+ er

tr ≥ ar + er

0 ≤ djw ≤ 60days ∧ dw ≥ 0

d r
=

0

dr = 2

0 ≤ dpw ≤ 60days

Is the model “correct”?

Send to
prefecture

Result
prefecture

dw ≥ 0 dr = 0

dr = 1

infinitely many runs with infinitely many distinct variable assignments
The integrated way

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay Notify

Collect
credit

Add
penalty

aw, tw, dw, pw ≥ 0

pw ≥ 0

0 ≤ dsw ≤ 90days ∧ ew ≥ 0

pw ≥ 0 pw ≥ 0 aw ≥ 0

tr ≥ ar + erdr ≠ 0 ∨ (pr = 0 ∧ tr ≥ ar) tr <
ar

+ er

tr ≥ ar + er

0 ≤ djw ≤ 60days ∧ dw ≥ 0

d r
=

0

dr = 2

0 ≤ dpw ≤ 60days

Is the model “correct”?

Send to
prefecture

Result
prefecture

dw ≥ 0 dr = 0

dr = 1

Send to
prefecture

Result
prefecture

dr = 0

dr = 1

dw ≥ 0

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay Notify

Collect
credit

Add
penalty

aw, tw, dw, pw ≥ 0

pw ≥ 0

0 ≤ dsw ≤ 90days ∧ ew ≥ 0

pw ≥ 0 pw ≥ 0 aw ≥ 0

tr ≥ ar + erdr ≠ 0 ∨ (pr = 0 ∧ tr ≥ ar) tr <
ar

+ er

tr ≥ ar + er

0 ≤ djw ≤ 60days ∧ dw ≥ 0

d r
=

0

dr = 2

0 ≤ dpw ≤ 60days

Is the model “correct”?

Send to
prefecture

Result
prefecture

dw ≥ 0 dr = 0

dr = 1

Send to
prefecture

Result
prefecture

dr = 0

dr = 1

dw ≥ 0

Verdict: NO!

Process stuck if “send to prefecture” writes d > 1

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay Notify

Collect
credit

Add
penalty

aw, tw, dw, pw ≥ 0

pw ≥ 0

0 ≤ dsw ≤ 90days ∧ ew ≥ 0

pw ≥ 0 pw ≥ 0 aw ≥ 0

tr ≥ ar + erdr ≠ 0 ∨ (pr = 0 ∧ tr ≥ ar) tr <
ar

+ er

tr ≥ ar + er

0 ≤ djw ≤ 60days ∧ dw ≥ 0

d r
=

0

dr = 2

0 ≤ dpw ≤ 60days

Is the model “correct”?

Send to
prefecture

Result
prefecture

dw ≥ 0 dr = 0

dr = 1

Send to
prefecture

Result
prefecture

dr = 0

dr = 1

dw ≥ 0

Verdict: NO!

Process stuck if “send to prefecture” writes d > 1

Issue: blocked state

initial
state

final
state

reached state
(with some data)

Fine
received

Send

fine

Appeal to
prefecture

Pay

Insert
notification

Pay

Appeal to
judge

Pay Notify

Collect
credit

Add
penalty

aw, tw, dw, pw ≥ 0

pw ≥ 0

0 ≤ dsw ≤ 90days ∧ ew ≥ 0

pw ≥ 0 pw ≥ 0 aw ≥ 0

tr ≥ ar + erdr ≠ 0 ∨ (pr = 0 ∧ tr ≥ ar) tr <
ar

+ er

tr ≥ ar + er

0 ≤ djw ≤ 60days ∧ dw ≥ 0

d r
=

0

dr = 2

0 ≤ dpw ≤ 60days

Is the model “correct”?

Send to
prefecture

Result
prefecture

dw ≥ 0 dr = 0

dr = 1

Send to
prefecture

Result
prefecture

dr = 0

dr = 1

dw ≥ 0

Verdict: NO!

Process stuck if “send to prefecture” writes d > 1

Issue: blocked state

initial
state

final
state

reached state
(with some data)

deadlock or
livelock

Process mining is an iterative process

Process mining is an iterative process

mining

Process mining is an iterative process

mining modelling
unsound!

Data-aware process mining with separate techniques

Data-aware process mining with separate techniques

control-flow
mining

Data-aware process mining with separate techniques

control-flow
mining

guards/decision
mining

Data-aware process mining with separate techniques

control-flow
mining

guards/decision
mining

Data-aware process mining with separate techniques

control-flow
mining

guards/decision
mining

unsound!

Data-aware process mining

control-flow
mining

guards/decision
mining

modelling

Data-aware process mining with reasoning

control-flow
mining

guards/decision
mining

modelling

soundness
repair

Data Petri Nets
[Mannhardt,PhD2018; _____,ER2018; _____,ACSD2019]

• Petri nets enriched with typed variables
(ranging over infinite domains)

• Transitions access variables via read and
write guards

• State: marking + variable assignment

• Transition firing: usual firing semantics +

variable assignment update given a binding
for the written variables

Infinite reachability graph even when the net is bounded

Possibility of reasoning depends on the guard language

Fragile setting: undecidability around the corner!

Goal

soundness
repair

data-aware unsound
DPN

N
has blocked

states

data-aware sound DPN
“minimally adapted”

from N

Data-aware soundness
checks: using

[____,CAiSE 2022]

Assumptions

soundness
repair

data-aware unsound
DPN

N
has blocked

states

data-aware sound DPN
“minimally adapted”

from N

Assumptions

soundness
repair

data-aware unsound
DPN

N
has blocked

states

data-aware sound DPN
“minimally adapted”

from N

1.Underlying Petri net
(without data) is sound

Assumptions

soundness
repair

data-aware unsound
DPN

N
has blocked

states

data-aware sound DPN
“minimally adapted”

from N

1.Underlying Petri net
(without data) is sound

2.Guard language in a fragment
where soundness can be
checked [____,CAiSE 2022]
E.g.: variable-to-constant guards

Assumptions

soundness
repair

data-aware unsound
DPN

N
has blocked

states

data-aware sound DPN
“minimally adapted”

from N

1.Underlying Petri net
(without data) is sound

2.Guard language in a fragment
where soundness can be
checked [____,CAiSE 2022]
E.g.: variable-to-constant guards

3.Does not modify control
structure, only guards

The two views of a process model…
… and what “minimality” means!

process
model

…
infinitely many traces

a picture

process representation

process behaviors

Minimal number of
interventions on

guards
[Zavatteri et al., FM-BPM 2023]

Our approach:
minimal impact on

behavior
We only impact traces leading

to a blocked state

control-flow
infrastructure: sound!

read

or
if

ifwrite

read

or
if

ifwrite

execution

read

or
if

ifwrite

execution
pick

read

or
if

ifwrite

pick
execution

read

or
if

ifwrite

execution
check

read

or
if

ifwrite

execution

…
…

read

or
if

ifwrite

execution

…
…

read

or
if

ifwrite

execution

…
…

read

or
if

ifwrite

blocked state

execution

execution …
…

read

or
if

ifwrite

blocked state

First strategy:
restrict behavior

…
…

read

or
if

ifwrite

First strategy:
restrict behavior

execution

blocked state

…
…

read

or
if

ifwrite

First strategy:
restrict behavior

execution

…
…

read

or
if

ifwrite

blocked state

Second strategy:
extend behavior

execution

…
…

read

or
if

ifwrite

blocked state

Second strategy:
extend behavior

execution

…
…

read

or
if

ifwrite

Second strategy:
extend behavior

execution

How to?
Step 1. Formula to characterise blocking runs

bounded

Data Petri

Net
constraint graph φ

Data-aware soundness
• There are no dead tasks

• The final marking is only reached in a clean way for

some variable assignment

• In every reachable marking, it must be possible to

reach the final marking for some variable assignment

φ1φ2φ3

SMT

Symbolic representation of
reachable states

How to?
Step 1. Formula to characterise blocking runs

bounded

Data Petri

Net φ
Data-aware soundness
• There are no dead tasks

• The final marking is only reached in a clean way for

some variable assignment

• In every reachable marking, it must be possible to

reach the final marking for some variable assignment

φ1φ2φ3

SMT

Extract formula

capturing exactly
those runs that

get stuck

φblocked

constraint graph

Symbolic representation of
reachable states

How to?
Step 2. Carefully iterate over blocked states,
 using to minimally avoid/unblock themφblocked

Restriction: avoid blocked states by
tightening guards

How to modify guards?
• Retrieve formula

• Let a be a transition leading to that blocked

state

• Update

φblocked

guard(a) = guard(a) ∧ ¬φblocked

Extension: let blocked states proceed by
relaxing guards

How to modify guards?
• Retrieve formula

• Let a be a transition leading to that

blocked state

• Update

φblocked

guard(a) = guard(a) ∨ φblocked

I
I

I '

I a

I (a) := (a) ^ ¬'

I

I
I

I '

I a

I (a) := (a) _ '

I

How to?
Step 2. Carefully iterate over blocked states,
 using to minimally avoid/unblock themφblocked

Restriction: avoid blocked states by
tightening guards

How to modify guards?
• Retrieve formula

• Let a be a transition leading to that blocked

state

• Update

φblocked

guard(a) = guard(a) ∧ ¬φblocked

Extension: let blocked states proceed by
relaxing guards

How to modify guards?
• Retrieve formula

• Let a be a transition leading to that

blocked state

• Update

φblocked

guard(a) = guard(a) ∨ φblocked

I
I

I '

I a

I (a) := (a) ^ ¬'

I

I
I

I '

I a

I (a) := (a) _ '

I

Termination guaranteed for DPNs using
variable-to-constant guards

Can be applied to

general DPNs,

but may not terminate

Back to the road fine example

Send to
prefecture

Result
prefecture

dr = 0

dr = 1

dw ≥ 0

Back to the road fine example

Send to
prefecture

Result
prefecture

dr = 0

dr = 1

dw ≥ 0

φblocked = d > 0 ∧ d ≠ 0 ∧ d ≠ 1

Back to the road fine example
Restriction: modify the write guard on “send to prefecture”

Send to
prefecture

Result
prefecture

dr = 0

dr = 1

dw ≥ 0

φblocked = d > 0 ∧ d ≠ 0 ∧ d ≠ 1

Back to the road fine example
Restriction: modify the write guard on “send to prefecture”

Send to
prefecture

Result
prefecture

dr = 0

dr = 1

dw ≥ 0

φblocked = d > 0 ∧ d ≠ 0 ∧ d ≠ 1

dw ≥ 0 ∧ ¬(dw > 0 ∧ dw ≠ 0 ∧ dw ≠ 1)
≡

dw = 0 ∨ dw = 1

Back to the road fine example
Extension: nondet. pick one of the two choice guards and fix it

Send to
prefecture

Result
prefecture

dr = 0

dr = 1

dw ≥ 0

φblocked = d > 0 ∧ d ≠ 0 ∧ d ≠ 1

Back to the road fine example
Extension: nondet. pick one of the two choice guards and fix it

Send to
prefecture

Result
prefecture

dr = 0

dr = 1

dw ≥ 0

φblocked = d > 0 ∧ d ≠ 0 ∧ d ≠ 1

Back to the road fine example
Extension: nondet. pick one of the two choice guards and fix it

Send to
prefecture

Result
prefecture

dr = 0

dr = 1

dw ≥ 0

φblocked = d > 0 ∧ d ≠ 0 ∧ d ≠ 1

dr = 1 ∨ (dr > 0 ∧ dr ≠ 0 ∧ dr ≠ 1)
≡

dr > 0

Fully implemented: soundness.adatool.dev

Experiments
Repair of unsound DPNs

Conformance checking (road fines example)
Repair does not

affect conformance
negatively

Extension
takes more
time (larger
constraint

graphs)

Conclusions

Take home

• Need of soundness repair in data-aware process mining
• SMT-based automatic repair for DPNs that is conservative on

the control-flow and on the original behavior

• Two repair directions: restrict or extend

• Fully implemented

 Next steps

• Blending of restriction and extension, user-in-the-loop

• Log-driven data-aware repairs

Repairing
soundness
properties
in
data-aware
processes
Paolo Felli, Marco
Montali, Sarah Winkler

ICPM 2023
Rome, Italy

