**Utrecht University** 

#### Measuring the Stability of Process Outcome Predictions in Online Settings

Suhwan Lee<sup>1</sup>

Marco Comuzzi<sup>2</sup>

Xixi Lu<sup>1</sup>

Hajo A. Reijers<sup>1</sup>

<sup>1</sup>Utrecht University, Utrecht, The Netherlands <sup>2</sup>Ulsan National Institute of Science and Technology





## Outline

- 1. Introduction
- 2. Related works & Research question
- 3. Meta-measures
- 4. Experiment results
- 5. Conclusion & Future works

## Predictive process monitoring



## Online predictive process monitoring



## Model is updating?



#### Model performance is also updated



Related works

Meta-measures

Experiment



Related works

Meta-measures

Experiment

## What is the best model?



## Research question

# How to assess the **stability** of models for online predictive process monitoring?

Introduction

Related works

Meta-measures

Experiment

## Related works



#### Motivation - Business scenario

| Frequency    |                                      |                                                                                          |
|--------------|--------------------------------------|------------------------------------------------------------------------------------------|
| ricquericy   | Adapt to business environment change |                                                                                          |
| High         | E.g., Predictive maintenance         | E.g., Diagnosis and<br>treatment in the emergency<br>department                          |
| Low          | Non-critical<br>Scenario             | E.g., Diagnosis and<br>treatment of critical<br>diseases<br>Stable performance over time |
| _            | Low                                  | High Risk                                                                                |
| Introduction | Related works Meta-me                | asures Experiment                                                                        |

#### Continuous performance evaluation



Introduction Related works Meta-measures Experiment Conclusion

#### Continuous performance evaluation



Stable area = 
$$(ma_t - \varphi_t, ma_t + \varphi_t)$$
  
Drop point  $(d_t) = p_t < (ma_t - \varphi_t)$ 

Introduction

Related works

Meta-measures

Experiment



#### Continuous performance evaluation



Introduction

#### 1. Frequency of relevant performance drops (F)



Conclusion

Introduction

2. Volatility of the performance  $(V_{perf})$ 



Introduction

3. Magnitude of performance drop  $(M_{max,avg})$ 



Conclusion

Introduction

4. Recovery rate  $(R_{avg})$ 



Conclusion

Introduction

## Experiment setting

#### How to use the meta-measures?



Let's look at the business scenarios again



Introduction

Related works

Meta-measures

Experiment

## Experiment setting



Two real-life logs

• BPIC 2015 & BPIC 2017

Two synthetic logs

• Different concept drift



Three algorithms (Binary outcome prediction)

- Incremental (HATC)
- Sliding window (XGB)
- Train-once (LSTM)



Four measures

- Accuracy
- Precision, Recall, & F1-Score

Conclusion

Introduction

Related works

Meta-measures

Experiment

## Result



### Result



Introduction

Related works

Meta-measures

Experiment



## Conclusion & Future works

We develop Meta-measures for online process outcome predictive monitoring
We assess the performance stability in various business scenarios



## Thank you

