

Prediction-based Resource Allocation using LSTM and minimum cost and maximum flow algorithm

Gyunam Park, Minseok Song[†] POSTECH, Pohang, South Korea

June 26, 2019

Contents

- Introduction
- Background
- Method
- Evaluation
- Conclusion

Introduction

- Research Background
- Objective

Introduction - Research Background

Resource allocation in business process management (BPM)

- Resource allocation in BPM aims at allocating appropriate resources to tasks at the correct time, to balance the demand for process executions against the availability of these resources.
- It has been recognized as an important issue in BPM since efficient resource allocation improves productivity, balances resource usage, and reduces execution costs.
- In a more general perspective, it shares commonalities with job-shop scheduling problem in operations research.
 - This problem finds the job sequences on machines to achieve an objective (e.g., minimizing total completion time), which is NP-hard and computationally intractable combinatorial problem.
 - There has been considerable research in the area of job shop scheduling over the past years.
 - ✓ Dispatching rules (Huang et al., 2015)
 - ✓ Shifting bottleneck heuristics (Braune et al., 2016)
 - ✓ Local Search (Kuhpfahl et al., 2016)

Introduction - Research Background

Resource allocation in business process management (BPM)

- Among the techniques, **dispatching rules** receive massive attention from practical viewpoint since it is useful to find **a reasonably good solution in a relatively short time**.
- However, they are applicable **only if the required parameters** such as the release time, the processing time, and the sequence of operations of jobs **are known in advance**.
- Instead, we have **limited information** about the scheduling parameters in many circumstances.

<Emergency department>

Unaware of,

- 1. When and why a patient would come into the department
- 2. Clinical procedures
- 3. Processing time taken to finish an operation

Non-clairvoyant Online Job Shop Scheduling Problem

Prediction can play a key role in this problem

Introduction - Research Background

Motivating example

 Suppose we find optimal resource allocation (in terms of total weighted completion time) for "MRI" operation in emergency department.

Introduction - Objective

Background

- Preliminaries
- Problem Statement
- Baseline approach

Background - Preliminaries

Predictive business process monitoring

- Predictive business process monitoring aims at providing timely information that enable proactive and corrective actions to improve process performance and mitigate risks.
 - Next event prediction: predicting the next event of a running instance such as next activity.
 - Time prediction: predicting time-related properties of a running instance such as remaining time and processing time.
- Tax et al. (2017) propose an approach that predicts both the next activity and its timestamp using LSTM (Long-Short Term Memory Neural Network).

Background - Preliminaries

Minimum cost and maximum flow problem

- Minimum cost and maximum flow problem is a way of minimizing the cost required to deliver maximum amount of flow possible in the network.
 - E.g., A directed graph G = (V, E) with a source node $s \in V$ and a sink node $t \in V$, where each edge $(u, v) \in E$ has cost and capacity.

<Minimum cost and maximum flow of G>

It can be solved in polynomial time using the network simplex algorithm.

Background - Problem Statement

Non-clairvoyant Online Job Shop Scheduling Problem

- Given a set of instances I, this problem finds an optimal scheduling of all operations within instances while minimizing total weighted completion time $\Sigma_i w_i C_i$,
 - $\overline{}$ w_i : weight of I_i
 - \overline{C}_i : difference between the finish time F_i and start time S_i of an instance I_i .
- Assumptions:
 - 1. Unaware of the information regarding an instance except the weight of it.
 - 2. Find out the **next operation of an instance** only if the instance finishes its current operation.
 - 3. Each operation has a specific set of resources with whom it needs to be processed.
 - 4. **Only one operation** within an instance can be processed at a given time.
 - 5. Once processing begins on an operation, it cannot be stopped until completion.

Background - Problem Statement

Running Example

- Suppose there are 5 instances and 3 resources in the process.
 - $I_1, ..., I_4$ are ready for the allocation at $T = t \rightarrow We$ don't know the processing time.
 - $\overline{}_{5}$ is currently doing its 2nd operation (i.e., $wi_{5,2}$) at T=t \rightarrow We don't know the next activity (and required resource).

<Notation>

 \rightarrow $wi_{i,k}$ (k^{th} operation of instance I_i) can be processed by r_j in $p_{i,k,j}$ (processing time)

	I_1	I ₂	I_3	I_4	I_5
Weight	1	1	1	5	10

<Instance weights>

Background – Baseline approach

Baseline Approach (WeightGreedy)

- 1. Each work item is assigned to an available resource in a "first come, first served" manner.
- 2. If there exist conflicting demands for the same resource, the work item with **higher weight is served first**.
- 3. If the competing work items have the same instance weights, the **tie is broken at random**.

	I_1	I ₂	I_3	<i>I</i> ₄	<i>I</i> ₅
Weight	1	1	1	5	10

<Instance weights>

Released at T = t

Method

- Overview
- Steps

Method - Overview

Step 1: Constructing Prediction Model

- In this step, we aim at building a model to predict the **processing time** and the **next activity** of a running instance, which is based on LSTM (Tax et al, 2017).
- We learn the model with all traces in the historic data.
 - E.g., Training with a trace $\sigma_1 = \langle e_1, e_2, e_3 \rangle$

Step 2: Predicting parameters

- Based on the prediction model we construct in the previous step, we predict the next activity and processing time of ongoing instances from the current data.
- We conduct two consecutive predictions for a running instance.
 - 1. Predict the next activity of it.
 - 2. Predict the processing time of the activity by available resources.

Step 3: Scheduling

• In this step, we find an optimal scheduling by solving a min-cost max-flow network problem.

Cost function is designed to minimize total weighted completion time

- 1. Connect source(sink) node to $\widehat{WI}(\widehat{R})$. Edges have cost of 0 and capacity of 1.
- 2. If a work item can be processed by a resource, add edges with (cost, capacity=1).
- 3. Apply min-cost max-flow algorithm to find the optimal allocations.

Step 4: Executing resource allocation

- In this step, we classify the optimal allocations into **executable and non-executable allocations** and then execute only the executable allocations.
 - Executable allocation: both instance and resource are available at the moment
 - Non-executable allocation: either instance or resource is not available at the moment

Evaluation

- Artificial event log
- Real-life event log

Evaluation – Artificial event log

Experimental design

- Procedure
 - 1. Design a business process and generate historic data and current data by simulating it.
 - 2. Compare our proposed method with baseline approach in terms of **total weighted completion time** and computation time by varying the number of instances.
- Process description
 - Emergency treatment process at a hospital with 11 activities and 25 resources
 - Each resource has different skills and proficiency level.
 - $\overline{}$ Patients with different weights (1~10) come into the process in a regular interval.
- Log Generation
 - Historic data: 7 days, 1,000 instances
 - Current data: 6 hours, 40~120 instances

Evaluation – Artificial event log

Results

Total weighted completion time and computation time, given the different number of instances.

Evaluation – Real-life event log

Experimental design

- Procedure
 - 1. Generate historic data and current data by splitting the real-life log.
 - Compare our proposed method with baseline approach in terms of total weighted completion time and computation time
- Process description
 - Application procedure for a personal loan at a global financing organization (BPIC'12)
 - 7 activities and 48 resources
 - 13,087 cases and 262,200 events from Oct. 2011 to Mar. 2012
 - According to the case attribute "AMOUNT_REQ", we assign the weight $(1\sim10)$ to each instance.
- Log split
 - Historic data: events before 10th Mar. 2012
 - Current data: 10th Mar. 2012
 - √ contains 110 instances, each conducting 3 activities on average

Evaluation — Real-life event log

Results

- Total weighted completion time and computation time.
 - Total weight completion time of the proposed method is **42 percent lower** than the one of baseline approach.
 - √ assigning the most efficient resources and reserving some resources for future allocation
 - The computation time is much higher in the proposed method.
 - ✓ each work item has many resource options → high computation for predicting the parameters (110.1 out of 115.6)

<Experimental result on real-life event log>

Method	Total weighted completion time	Computation time(secs)
Baseline	1479	7.6
Suggested	1038 (-42%)	115.6

For prediction: 110.1 secs For scheduling: 5.5 secs

Conclusion

- Contribution
- Limitation
- Future works

Conclusion

Contribution

- In this paper, we suggest a concrete method to improve a business process using results from predictive business process monitoring.
- To this end, we adopt the time and next event prediction technique based on LSTM and min-cost max-flow algorithm to optimize online resource scheduling.
- We verify the effectiveness and efficiency of the proposed method on both an artificial log and a real-life log.

Limitation

- Our proposed method relies heavily on the performance of the prediction model.
- The **computation time** is relatively higher than the baseline approach.

Conclusion

Future work

- We will conduct additional experiments such as the effect of the prediction accuracy on the performance.
- We will extend this two-phase method to achieve another goal such as minimizing the
 potential risks in the business process by predicting other relevant parameters and defining
 a relevant cost function of network arcs.
- Another direction for future work is to extend the proposed method by adopting advanced dispatching techniques.

Q&A

