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Abstract—Stomach and esophageal cancer are in the top ten
most common cancers worldwide, both with high mortality rate.
Approximately one-third of these patients have metastases at
initial diagnosis and should receive personalized palliative care
to improve their remaining life time. However, there is a lack of
consensus about personalized palliative care options. This often
leads to difficulties in determining the right treatment pathway
for individual patients. This study investigates the application
of process mining techniques on palliative care pathways for
stomach and esophageal cancer to obtain an evidence-based
understanding of which palliative treatments are commonly
carried out in clinical practice and how they are associated
with patients’ survival time. Given the high variability of the
treatment pathways, ‘local models’ are derived, rather than end-
to-end process models, which are then validated with the aid of
physicians. In addition, this study also investigates the use of
predictive process monitoring techniques to predict patients’ life
expectancy. The results show the benefit of taking the process-
flow into account in predicting the outcome of the palliative
treatments.

Index Terms—Local Process Mining; Predictive Process Mon-
itoring; Healthcare Processes

I. INTRODUCTION

Stomach and esophageal cancer (combined as esophagogas-
tric cancer, EGC) are in the top ten most common cancers
worldwide, both with high mortality rate [1], [2]. At initial
diagnosis, almost a third of the esophageal and stomach
patients have metastases [3]. Patients with metastatic EGC can
usually not be cured and receive palliative care to increase the
quality of the remaining life time and possibly to extend it.
The disease course of EGC is however heterogeneous. Patients
can have various complaints due to either the primary tumor
(e.g. dysphagia, obstruction of food passage through stomach)
or metastases (e.g. pain, organ dysfunction), with treatment
options from different medical disciplines. Personalized mul-
tidisciplinary palliative care to treat the individual needs of
these patients is thus urgently needed. However, nowadays
there is no clear consensus on guidelines for the prescription

of palliative care treatments for patients with EGC. One of the
reasons can be found in the limited knowledge available on
the most effective treatments for these patients. For treatment
of specific symptomatology, few randomized clinical trials
(RCTs) are available. For treatment with systemic therapy
RCTs are often based on strict inclusion criteria regarding,
e.g., physical fitness, or comorbidities of the patient which,
while increasesing the rigor of the study, hampers the gener-
alizability of the results [4], [5], [6]. The lack of evidence-
based guidelines makes selecting the best option for these
patients challenging [3], [7], [8], which results in a strong
variability in treatments provided by different hospitals and
different doctors. This highlights the need for developing more
evidence-based palliative care strategies, based not only on
RCTs but taking into account also other kinds of data.

The goal of this research consists in investigating the use
of historical data of palliative treatments for EGC patients
to provide evidence-based insights on current treatments and
their impacts on the patients’ survival time. The study is con-
ducted in cooperation with the Amsterdam University Medical
Centers and with the Netherlands Comprehensive Cancer
Organisation (IKNL), a Dutch research institute that focuses
on reducing the impact of cancer, and which maintains the
Netherlands Cancer Registry (NCR), one of the most extensive
disease specific registries worldwide (https://iknl.nl/over-iknl).
We focus on the following research questions (RQs):

• What are common practices in the palliative treatment of
EGC patients in The Netherlands which impact patients’
survival time?

• Given an event log of completed treatment pathways and
the patient’s survival time of each case, how to train a
model that can accurately predict the life expectancy of
a patient currently under treatment?

To address these questions, we investigate the application of
process mining (PM). PM is a family of techniques aimed
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at analyzing event logs tracking process executions to extract
useful insights on the corresponding process. An event log is
a set of traces (aka, cases), each containing activities executed
for a given patient at particular timestamps (i.e., events). Sev-
eral previous studies have demonstrated the potential of using
process mining techniques to analyze healthcare processes,
suggesting that these techniques can effectively support in
answering the above-mentioned research questions [9], [10],
[11], [12], [13]. In this study, we apply local process model
(LPM) mining techniques to extract common practices of the
palliative process; while we use predictive process monitoring
(PPM) to predict patient’s life expectancy. The obtained results
prove the value of PM approaches to understand palliative
EGC treatment. The extracted models were indeed able to rep-
resent well-known cancer treatments, validated by the doctors;
furthermore, the prediction models achieved a reasonable level
of performance, and highlighted the importance of the process
control-flow as a predictive feature for these processes. It is
worth noting that the access to the NCR allowed this study
to take into account a much larger cancer population than the
ones considered in previous studies on EGC.

The rest of this paper is organized as follows. Section II
provides a brief overview on related work; Section III intro-
duces the research methodology; Section IV presents the case
study and the results; Section V discusses the limitations of
this study, together with future research directions.

II. RELATED WORK

Process mining aims at exploiting data stored in organi-
zations’ information systems to understand and enhance the
corresponding processes [14]. During the last decades there
have been an increasing number of applications of PM in
the health-care domain, with promising results, as reported
by different survey studies [9], [10]. An interesting trend
emerging from such studies is that the majority of previous
work focused on applying process discovery techniques in
order to provide evidence-based insights on how a given
healthcare process was actually carried out in reality. To
address the high variability of these processes, mostly either
abstraction techniques (e.g., the Heuristic Miner [15], or the
Fuzzy Miner [16]) or clustering techniques (e.g., [17]) have
been used. The first category aims at abstracting infrequent
and noisy behaviors to derive process models showing only
the core process behavior, while the latter aims at clustering
together similar traces to generate a set of models from more
homogeneous behaviors, in place of a single model. A different
strategy to deal with variable processes consists in mining
local models, i.e., extracting only a subset of process behaviors
which are of interest according to some user-defined criteria.
While a number of local model extraction techniques have
been proposed in the last years [18], [19], [20], [21], the
above-mentioned surveys [9], [10] show that this topic is still
quite underrepresented within the healthcare domain, despite
its potential.

While most previous applications of PM to healthcare focus
on off line analysis, a recent, emerging trend is the increasing

interest in applying predictive process monitoring techniques
to provide on line support to healthcare processes. The core
idea is to train a predictive model to generate predictions about
what will happen for a running case [22]. This requires to
encode the log traces in a feature vector suitable for training
the model. A number of trace encoding approaches have been
introduced in the last years (e.g., using aggregation functions
on event attributes [23], or explicitly modeling the order of
the events [24]), and applied in combination with different
prediction models (e.g., classic machine learning techniques
like decision trees [25], or deep learning approaches like
LSTM [26]). Examples of applications within the healthcare
domain are predicting violations of clinical guidelines [27], in-
hospital mortality [28], or the fulfillment of a set of goals [29].
In this work, we will investigate the use of PPM techniques to
predict patients’ life expectancy. In addition to state-of-the-art
trace encoding approaches, we will investigate the use of LPM
as predictive features which, to the best of our knowledge, has
not been used in previous work.

III. METHODOLOGY

This research has been conducted following the principles
of the PM2 framework, a well-known process mining project
methodology aimed at understanding and improving an orga-
nization’s processes [30]. The framework involves six steps:
a) Planning, where RQ are defined; b) Extraction, where
event data are extracted; three analysis and iteration steps,
i.e., c) data processing, d) mining and analysis, e) evaluation,
where different PM techniques are applied and their results
evaluated, typically in an iterative fashion; finally, the findings
of the analysis are used for the f) process improvement and
support phase. The formulation of the RQ has been discussed
in Section I. As regards the data extraction, data from the
IKNL registry have been used (more details in Section IV).
The following subsections delve into the PM methods applied
for each RQ. Note that phase f is out of scope for this project.

A. Local Process Model Discovery

The first RQ focuses on uncovering common practices
within palliative treatments. To this end, we apply a local
process model discovery technique, of which the goal consists
in extracting relevant process patterns that would likely go
undetected in an end-to-end model in a highly variable context.
In particular, we apply the technique proposed in [19], since,
to the best of our knowledge, this is the only approach that
allows to represent the most common control-flow constructs
(e.g., sequence, concurrency, loops). There, LPMs are in the
form of process trees, where each node is either a leaf
node (i.e., an activity) or a non-leaf node (i.e., an operator,
like sequence (→), choice (×), concurrency (∧)). Each non-
leaf node has one or more children, which can be leaf or
non-leaf nodes. The discovery of a LPM set is an iterative
process involving four steps, namely the generation of a set
of candidate LPMs, the evaluation according to a set of
metrics, the selection of the candidates fulfilling user defined
thresholds on the metrics and, finally, the expansion of each
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Fig. 1. A process tree and an equivalent petri net [19]

process tree with additional nodes. The process stops when no
more candidates are generated or when a maximum iteration
number is reached. Five metrics are used to assess the LPMs;
the support, which represents the number of occurrences of
the LPM; the confidence, that is the share of events of the
activities in the LPM which fit the behavior described by the
LPM; the language fit, that measures the ratio of behavior
allowed by the LPM that is observed in the event log; the
determinism, that relates to the degree to which future behavior
can be determined; finally, the coverage, that measures the
frequency of the activities described by the LPM in the log.
The generated process trees are then transformed in Petri nets,
a common process modeling language [31]. A Petri net is a
bipartite graph consisting of places (used to represent states
of process executions) and transitions (i.e., activities). Fig.1
shows a process tree and an equivalent Petri net.

In this study, we are interested in those LPMs which show a
significant impact on the patients’ survival time. To determine
these high-impact LPMs, we make use of the Cox Proportional
Hazards Model, a technique widely used in survival analysis,
a field of statistics aimed at determining the overall survival
time of a particular population under study [32]. The Cox
Proportional Hazards Model is computed as follows [33] [34]:

h(t) = β0(t) exp

(
n∑
i=1

bixi

)
(1)

where h(t) represents the hazard function, that is the risk
of dying at time t. The hazard function is determined by the
product of the baseline hazard function β0(t), that represents
the hazard when all the covariates xi (i.e., factors that are ex-
pected to affect the survival time) are zero, and the exponential
of the sum of the covariates with the corresponding coefficients
bi. The coefficients denote the impact of the covariates on the
hazard function h(t). The quantities exp(bi) are called hazard
ratios; a value lower (higher) than one indicates that the covari-
ate is associated with improved (decreased) survival. Note that
survival times are not required to follow a specific statistical
distribution, however, the proportion of the hazards for any two
individuals should be constant over time [34]. In this study,
the occurrence of LPMs are used as covariates to compute the
Cox Proportional Hazards Model; hazard ratios are then used
to quantify their impact on patients’ survival. Note that the Cox
model cannot be used to prove causal relations between the
occurrence of a LPM and the observed patient’s survival time.

Nevertheless, it allows to identify LPMs statistically related
with higher or lower survival time, thus providing useful
insights on the treatment process. Note that data preprocessing
is needed in order to remove possible (multi) collinearities
before applying the Cox model [35]. Collinearity occurs when
the independent variables in a regression model are strongly
correlated and can lead to misleading results. In this study,
we expect collinearity due mostly (though, not exclusively) to
inclusion relations among LPMs (e.g., an LPM encompassed
by a larger one). Our pre-processing takes into account both
pairwise correlation and multicollinearity. To estimate pairwise
correlation, we use the chi square test of independence [36].
When two non-independent LPMs are found, only one is
kept (the one with highest support or, when the support
is the same, the biggest one). As regards multicollinearity,
we use the Variance Inflation Factor (VIF) [37], which is a
well-known method in literature to mitigate colinearity. When
collinearities are detected, the variable with the highest VIF
score is removed from the dataset.

B. Predictive Process Monitoring

The second RQ of this project focuses on predicting pa-
tients’ life expectancy. In particular, we are interested in
assessing to which extent the treatments a patient has been
going through (i.e., the control-flow aspect of the treatment
process) contribute to predict patients’ life expectancy. Note
that life expectancy in this study is treated as a categorical
indicator, whose values represent temporal windows defined
(and labeled) together with experts from IKNL (see Section
IV-C). Therefore, outcome-oriented predictive process mon-
itoring techniques are used. The standard PPM framework
consists of the offline phase, where prediction models are
trained on historical cases, and of the online phase, where these
models are used to generate predictions on running cases. The
offline phase consists of three steps.

a) Create prefix buckets: First, prefixes (i.e., trace sub-
sequences of a predefined length) are generated from the event
log and assigned to buckets, i.e., prefix groups. In this research,
prefixes of equal prefix length are considered per bucket, a
strategy often used in literature and that has shown good
results in previous work [22]. We consider only prefix lengths
with more than 100 patients, to ensure to have a reasonable
number of samples supporting the results of the analysis.

b) Sequence encoding techniques: In this research, we
tested the most commonly used sequence encoding techniques,
which are briefly explained in the following by using the ex-
ample trace σ1 = 〈consultation, ultrasound, ultrasound〉,
labeled as cσ1 . The boolean encoding method encodes the
activities with a 1 if the activity occurs in the trace, 0 other-
wise. The frequency-based encoding method uses, instead, the
frequency of each activity. Table I shows both these encoding
for σ1. These methods do not take the order of events into
account. The simple index encoding [24], instead, considers
the order by generating a feature for each activity position
in the case. Table II shows the simple index encoding for σ1.
However, when the variability of the traces increases, the posi-
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tion encoding may generate a sparse matrix, thus affecting the
prediction performance. To address this issue, in this research
we also investigate the use of LPMs as encoding strategy.
They can provide a compact representation of core process
behaviors, possibly involving also parallelisms and loops, thus
allowing to encode relevant control-flow information in a
smaller number of features than the simple index encoding.
However, this compact representation comes at the expenses
of possible information loss on specific event sequences. Every
LPM is treated as a feature, with a binary encoding (i.e., 1 if
the LPM occurrs for a patient, 0 otherwise). Table III shows
the LPM-based encoding for σ1, assuming that LPM1 =
((consultation, ultrasound),→), i.e., ultrasound occurrs
after consultation. Patients’ attributes are encoded as well,
using one-hot encoding for categorical attributes.

c) Train prediction models: In this stage, prediction
models are trained on the prefix buckets. For this research,
classic machine learning approaches have been considered.
We plan to investigate the use of approaches based on Deep-
learning in future work. We have selected Random Forest,
XGBoost (highlighted as best prediction models in a recent
benchmark study [22]), and decision trees. The latter technique
was chosen because it is in general appreciated for being
explainable for domain experts. Both a binary class and a
multi-class setting has been tested to assess the impact of
different discretization strategies on the prediction results. To
optimize the prediction performance, both feature selection
and hyperparameter optimization have been used. In particular,
we tested two feature selection and extraction strategies, i.e.
wrapping methods and principal component analysis (PCA)
respectively. Wrapping methods select the combination of fea-
tures leading to the highest performance of a selected classifier.
While these methods can be computationally expensive, they
perform in general better than other feature selection methods
[38]. While wrapping methods return the optimal subset of
features, PCA first selects principal components and uses these
principal components to create new features [39]. We tested
both methods aiming at obtaining new feature sets involving
respectively 30, 50, and 75 percent of the original feature
set. As regards hyperparameter optimization, we use Bayesian
hyperparameter optimization, which uses a surrogate model
that relies on earlier outcomes to select the most promising hy-
perparameters to evaluate in the objective function, and often
proved to perfom better than grid and random search [40]. We
selected the hyperparameters optimized per prediction model
and their ranges (shown in Table IV) following what has been
done in previous work [22], [41]. The hyperparameters are
optimized for each feature set and predictive model. To obtain
robust results, 3-fold cross validation is applied.

IV. CASE STUDY

A. Event log description

The dataset used in this research is provided by the Nether-
lands Cancer Registry (NCR), maintained by the Nether-
lands Comprehensive Cancer Organisation (IKNL). The NCR

dataset includes data of all newly diagnosed patients with can-
cer in the Netherlands since 1989, together with information
related to their treatments. Patient data in the NCR is divided
into multiple episodes, each representing a period of time until
progression of the disease of the patient. Since life expectancy
of most patients diagnosed with EGC is not very long, most of
them receive only treatments in the first episode. Therefore,
in this research the first episode is examined, ranging from
2015 until 2017. The data of the NCR fulfills the three
requirements to be used in process mining analysis. The data
of NCR contains a unique identifier (case ID) per disease per
patient; the events can be derived from the data attribute that
provides codes of treatments; the timestamp of the treatments
is included (in days). Nevertheless, some data pre-processing
is necessary, as explained in the following.

Some activities are logged in sequences in the event log,
while according to domain experts they are executed in par-
allel. Therefore these activities are aggregated to high-level
activities. A common example is for activities belonging to
the same class of treatments which start within three days
after the first treatment or before the stop of previously
started treatments. In the data, this has been often observed
for chemoterapy activities; for example, Capecitabine and
Oxaliplatine have often been aggregated to the high-level
activity Capecitabine/Oxaliplatine.

Furthermore, some activities have been relabeled, again in
agreement with domain experts, to mitigate the variability.
In particular, different Radiotherapy activities are relabeled
to the activity Radiotherapy. Several low-frequency activities
concerning radiotherapy on body parts where cancer has
metastasized are relabeled to the single activity named Rtmeta.
Other activities, including surgery where the esophagus or
stomach’s tumor is removed, are relabeled into the activity
called Chorg. Lastly, activities concerning surgery on the
metastases are relabeled into the activity termed Chmeta.

Finally, some cases were removed where there were logging
errors (e.g., patients for which the survival was not known), as
well as exceptional cases or outliers, like patients who received
one or multiple treatment(s) abroad. Similarly, patients with
too deteriorated health are removed from the dataset, as they
are not fit enough to receive any treatment.

At the end of the pre-processing, the event log consisted of
2364 cases, 36 activities, and 6546 events. Analyzing process
variants, we found that the event log contains 401 variants.
Fig. 2 shows the frequency distribution of the top ten variants.
It is worth noting that the first two variants alone represent
almost a third of the cases. As regards the number of events
per case, most cases (1200) consist of only one event. This was
expected, since these patients usually do not live very long and,
therefore, do not receive many treatments. Nevertheless, there
is a large number of cases involving two or more treatments,
which can be used to extract typical treatment combinations
by means of LPM analysis.
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TABLE I
BOOLEAN AND FREQUENCY ENCODING

Trace consultation ultrasound label
σ1 1 1 cσ1

σ1 1 2 cσ1

TABLE II
SIMPLE INDEX ENCODING

Trace e1 e2 label
σ1 consultation ultrasound cσ1

TABLE III
LPM ENCODING

Trace LPM1 label
σ1 1 cσ1

TABLE IV
PREDICTION MODEL, HYPERPARAMETER AND RANGE

Prediction model Hyperparameter Range
Random Forest Max features [0, #features]
XGBoost Learning rate [0,1]
XGBoost Subsample [0.5,1]
XGBoost Max tree depth [4,30]
XGBoost Colsample by tree [0.5,1]
XGBoost Min child weight [1,6]
Decision Trees Minimum samples split [2,50]
Decision Trees Minimum samples leaf [2,50]

Fig. 2. Frequency of the ten most common process variants

B. LPM mining results

a) Settings: We used the LPM miner plugin available
in ProM 6.9 (https://www.promtools.org/doku.php). The user
has to set three parameters to prune the LPM candidate set,
i.e., the support, the event gap and the determinism level. The
other metrics introduced in Section III are used to rank the
obtained models. Note that there are no general guidelines;
the parameters have to be tuned with respect to the problem
at hand. In this respect, we selected a value of 10 for the
support, following the domain experts’ recommendations. The
event gap determines how many events are allowed to occur in
between the events corresponding to the LPM. Given the short
length of most traces, we set the event gap to zero. We tested
determinism values within a range between the default value
of 0.5 until 0.8, with a step of 0.1, discussing the results with
the domain experts. The LPMs generated with determinism
0.7 were chosen, since they offered a good trade-off between
interpretability and generalization of the LPMs. Note that we
did not use the inclusive choice operators when generating
the LPMs, since it led to over-generalizing LPMs with little
interpretability. From these settings, we obtained in total 53

LPMs, from which we removed the ones showing collinearity
(see Section III-A); then, we applied the Cox hazard analysis
on the remaining ones.

b) Results: The Cox Proportional Hazards Model’s co-
efficients show that 17 LPMs exhibit a statistically significant
impact on patients’ overall survival time. More precisely,
three LPMs show a negative impact, with an average hazard
ratio of 2.02, while the rest show a positive impact,with an
average hazard ratio of 0.47. We discussed the impact LPMs
with oncologists from Amsterdam University Medical center.
Most positive impact LPMs contain chemotherapy treatments.
This is in line with doctors’ expectations, according to which
patients with esophageal and stomach cancer could be treated
with chemotherapy to extend the expected overall survival
if the patient is fit enough and willing to. As an example,
Fig. 3 and Fig. 4 show two LPMs acknowledged by the physi-
cians as a common combination of chemotherapy treatments.
In particular, the first LPM contains a loop involving the
chemotherapy activities Capecitabine and Oxaliplatine, which
are the first-line chemotherapy treatments for palliative care for
stomach and esophageal cancer patients according to medical
protocols. The second one shows two treatments that are
given in sequence, i.e., Chorg followed by Chmeta, which are
invasive treatments and will only be given to patients who are
fit enough and have specific disease characteristics; based on
that, a positive association with survival is expected. Another
interesting case regards the treatment called Trastuzumab
(Fig. 5). Only patients that have an overexpression of HER2
in the tumor cells can be treated with Trastuzumab in addition
to chemoterapy, and this is expected to have a positive impact
on the survival as well. The presence of LPMs showing this
combination and relating it to higher survival expectations
confirms the medical knowledge.

Only a few LPMs with negative impact have been found and
they were more tricky to interpret. Two representative ones
are reported in Fig. 6 and Fig. 7. It is worth noting that these
LPMs contain radiotherapy on metastases (Rtmeta). Rtmeta
aims at reducing complaints and does not aim at enhancing
overall survival, and it is often given to patients with worse
health conditions. Therefore, the fact that these treatments are
associated with worse survival expectancy is also in line with
medical knowledge. However, this treatment seems to often
be combined with chemotherapy treatments, which seem to
be contradicting with the insights gained from the positive
impact LPMs. For instance, Capecitabine and Oxaliplatine in
parallel has a good impact, but in conjunction with Rtmeta the
impact becomes negative. A possible explanation suggested by
doctors is that possibly Capecitabine and Oxaliplatine are only
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Fig. 3. Good impact: LPM14

Fig. 4. Good impact: LPM23

given a short duration to the patients, so these activities did
not have much impact. This suggest that in further research
the duration of activities should also be considered.

Wrapping up, the applied technique has been able to extract
from the data valuable insights on the palliative treatment
process, returning common treatments, together with an as-
sessment of their impact on patients’ survival, which are in line
with the medical knowledge. Nevertheless, further research is
needed to address some limitations, like the lack of temporal
information in the models, and to get a deeper understanding
of the treatment impact. In this respect, an interesting direction
consists in differentiating the impact of the LPMs with respect
to patients’ characteristics. While only patients with minimum
fit conditions to get at least some treatment have been selected,
some treatments have stricter minimum fit conditions to be
given to the patients, making it interesting to further investigate
this aspect. Nevertheless, these results represent the first steps
towards the building of a shared, evidence-based knowledge on
palliative EGC treatment that is necessary in order to deliver
the best care option to each patient, as discussed in Section I.

Fig. 5. Good impact: LPM8

Fig. 6. Bad impact: LPM36

Fig. 7. Bad impact: LPM51

TABLE V
FEATURE SETS WITH NUMBER OF FEATURES

Feature set Number of features
Simple index encoding 62

Binary encoding 45
Frequency encoding 45

Impact LPMs 17
LPMs 53

Patient characteristics 17

C. Predictive Process Monitoring

To generate the life expectancy label for each patient, the
corresponding survival time (recorded as number of days) has
been divided into classes with equal frequency. Both two and
three class setting have been tested. In the three class cases, the
labels are ’Low’, ’Middle’, and ’High’ corresponding to (30,
162], (162, 343], and (343, 1850] days of survival. For two
classes, we created ’Low’ and ’High’ labels, corresponding to
(30, 243] and (243, 1850] days. Class boundaries have been
discussed with experts from IKNL. As discussed in Section
III-B, different encoding strategies are tested; Table V shows
the number of features obtained for each of them. Note that
models are trained only for prefixes of length 1 and 2, since too
few data were available for longer prefixes. Also, since LPMs
consist of at least two activities, only for prefix length 2 the
LPM features can be used. We consider both the set of all
LPMs and the set involving only those LPMs that have an
impact on patients’ survival (referred to as “Impact LPMs”).

a) Results: For the sake of space, here we only delve
into the best results, obtained for two classes and prefixes of
length 2. Table VI shows the highest F1 and accuracy score
per combination of feature sets, classifier and feature selection
method (FS), with percentage of features used. In addition
to test each encoding strategy with/without considering the
patients’ characteristics, we were also interested in assessing
to which extent the use of LPMs as predictive features was
able to improve the classification performance w.r.t. the other
encoding strategies. To this end, we tested also combinations
of each LPM feature set with every feature set generated by
the other encoding methods. The crosses in Table VI show
the tested combinations. All the tested configurations perform
similarly in terms of F1 score, but differences in terms of
accuracy are more evident. In general, accuracy values are
below F1 score, which suggests that these models are better
in predicting the true positive (i.e., the “High” class). The
use of patients’ characteristics already allowed to obtain good
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TABLE VI
BEST PERFORMING CLASSIFIERS PER FEATURE SET

Patient char Index Frequency Binary LPMs Impact LPMs FS Classifier Percentage F1 accuracy
X PCA XGB 75 0.82 0.71
X X SFS XGB 50 0.84 0.73
X X X SFS XGB 75 0.84 0.76
X X X None XGB 100 0.87 0.80
X X SFS XGB 30 0.85 0.76
X X X None XGB 100 0.82 0.73
X X X None XGB 100 0.85 0.78
X X None XGB 100 0.83 0.76
X X X None XGB 100 0.82 0.73
X X X None XGB 100 0.85 0.78

X X SFS XGB 30 0.80 0.69
X X SFS XGB 30 0.84 0.73

X X SFS DT 30 0.82 0.71
X X SFS DT 30 0.82 0.71

X X SFS DT 30 0.82 0.71
X X SFS DT 30 0.82 0.71

X SFS RF 75 0.86 0.78
X SFS XGB 30 0.78 0.64

X X SFS RF 75 0.86 0.78
X X None RF 100 0.84 0.73

X SFS XGB 30 0.84 0.73
X None DT 100 0.82 0.71

X None DT 100 0.82 0.71

F1 results, although with poor accuracy. The combination of
patients’ characteristics with both index and Impact LPMs
encoding obtained the best performance, highlighted in bold,
improving significantly the accuracy with respect to the base-
line. Overall, the table shows that adding impact LPMs to the
other encoding strategies enhances the prediction performance.
Interestingly, the impact LPMs is the feature set that obtained
the second-highest accuracy and F1 scores, with a feature
space significantly reduced w.r.t. the other encoding strategies
(see Table V).

As regards the other testing settings, in general the binary
classification obtained better results than the three class prob-
lem, where a maximum F1 score of 0.57 was obtained. This
was expected, since binary classification is clearly an easier
problem than the multi-class one. Furthermore, the quality of
the prediction results increases when moving from prefixes of
length 1 to prefixes of length 2. This was also expected, since
in the latter case more information is available. Nevertheless,
classifiers on length 1 prefixes still managed to achieve a F1
score of 0.84, that is comparable to the best one obtained in
the length 2 prefixes. The main difference is in the accuracy,
whose best value for length 1 prefixes is 0.69, against the
0.8 achieved for length 2 prefixes. Nevertheless, these results
show that already after one treatment it is possible to obtain
somewhat reliable predictions. A trade-off should be chosen
between the earliness and the reliability of the prediction.

These results show that the built prediction models can
predict, with reasonably good performance, life expectancy
of a patient at multiple moments in the treatment process.
It also shows the value of taking the process aspects into
account when building the prediction. Nevertheless, additional
research is needed to further enhance the performance of the
classification models before they can be employed to provide

operational support for these processes. We highlight some
promising research directions in the following section.

V. CONCLUSION AND FUTURE WORK

This research investigated the application of PM techniques
to a) determine common treatment practices of palliative care
for patients with EGC, and b) built predictive models for pa-
tients’ life expectancy. We applied LPM mining techniques to
extract common treatment practices, then using using the Cox
Proportional Hazards Model to determine the impact of the
extracted LPMs on patient’s survival time. To predict patients’
life expectancy, predictive process monitoring techniques have
been employed, investigating the use of LPMs as prediction
features. The obtained results highlighted the importance of
the control-flow dimension for the prediction, and showed the
potential of the usage of LPMs, which allowed to obtain good
performance while significantly reducing the feature space.

The obtained results are promising and show the potential
of PM techniques to understand and, ultimately, to improve
the delivery of palliative treatments. Nevertheless, some limi-
tations were also highlighted during the research. First, this
research focused on the first line of treatment (treatment
until first progression of disease); future studies should con-
sider also patients going through multiple lines of treatments.
Possible relations between patients’ health conditions and
chosen treatment, as well as their impact on the expected
survival, should be investigated as well, as mentioned in
Section IV. Furthermore, we plan to investigate the impact
of more complex event attributes, like textual attributes (e.g.,
oncologists’ notes about patients’ complaints), or temporal
properties (e.g., the duration of the treatments). Other process
indicators should also be considered for the prediction, for
example indicators related to patients’ quality of life. Finally,

7



we plan to investigate the use of Deep Learning techniques,
like LSTM classifiers.
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