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Abstract—Event abstraction is a pre–processing method in
Process Mining to create an interpretable log and, in turn,
interpretable process models. Here, one or more events are
aggregated to one event at a higher level of abstraction. The
ProM plugin presented in this paper provides such an approach
by training a log shifting model based on investigating a known
high–level log and the related low–level log. This log shifting
model can then be used to convert any low–level log of the same
application. First evaluation results show that this approach is
applicable. The log shifter presented in this paper is particularly
tailored for Enterprise Collaboration Systems (ECS) that come
with special low–level log characteristics.

I. INTRODUCTION

Overly complex models, also referred to as spaghetti–
models are a common problem in process discovery. They
are hard to read and often have no further value for the
business [1]. In such cases, pre–processing of the event log is
necessary before a discovery algorithm is applied for mining
a process model from the log. One suitable and promising
approach is event abstraction, which aims to aggregate the
events from a lower abstraction level (e. g., system logs or
database operations) to events at a higher abstraction level [2].
By applying event abstraction, process discovery may result
in a process model with fewer activities and process flow
alternatives. Thus, the resulting process model is more com-
prehensible and better interpretable for humans.

In the last decade, several event abstraction approaches
were developed [2]. For describing event abstraction, authors
use terms such as Activity Mining [3], Event Log Abstrac-
tion [4], Activity Clustering [5], Log Lifting [6], and Sequence
Clustering [1]. Some of these approaches address specific
domains (e.g., Healthcare [7], Internet of Things [8], Customer
Journey [9]), or address general business processes. Some of
them consider intersections of low–level events, others do not.
The approaches further differ in the underlying data mining
techniques applied (e.g., supervised vs. unsupervised), the
concrete family of algorithms applied, or the amount of human
interaction required [2]. In general, existing approaches mainly
use clustering algorithms (e.g. [4]) and/or machine learning
approaches (e.g. [6]) to achieve the generation of the high–
level log.

Social Process Mining (SPM) aims to mine rather un-
structured collaboration processes from Social Software. As

ECS support collaboration and communication in companies,
they have emerged as the core components of the digital
workplace in companies [10] and thus are valuable sources for
mining and understanding collaboration processes. Due to the
characteristics of ECS, event abstraction comes with special
requirements. First, many ECS operate on multiple databases
that react differently to user actions. One user action may
result in multiple events in the low–level log generated by the
system. Second, as the databases are independent from each
other, the distance of the time stamps of two low–level events
are not always the same and moreover, the low–level events of
two corresponding high–level events might overlap temporally.
Third, due to the same reason, the order of the low–level events
might even vary slightly. Fourth, different sets of low–level
events, which belong to the same high–level activity, may
not contain the same low–level activities depending on the
usage behaviour of the user. Fifth, there may exist low–level
events, where no high–level event was triggered. Finally, logs
generated by most ECS are not interpretable for data scientists.
Hence, for generating interpretable logs, it is necessary to
observe an ECS a sufficiently long time, record the user
actions (e.g., by click path analysis) and thereby obtain a
high–level log that can then be used to train a log shifter
with the corresponding low–level log. Thus, we develop the
log shifting tool presented in this paper which satisfies the
outlined requirements for ECS logs.

The remainder of this paper is structured as follows: Sec-
tion II contains an overview and description of the presented
tool and section III presents the evaluation of the log shifting
tool and an outlook on future work on event abstraction.

II. TOOL DESCRIPTION

In a nutshell, we train a shifting model by examining
known high–level traces and the corresponding low–level
traces. The trained shifting model can then be used to shift an
arbitrary low–level trace of the observed system to a previously
unknown high–level trace. This approach is illustrated in
Figure 1.

We use our approach in an ECS with more than 4,000
users in which we can observe and track user activity in the
system using a tailored observer that records a high–level log
representing the real business activities in the process. The
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Fig. 1: Log Shifting Approach

observation is scheduled for 3 months for generating sufficient
amount of traces. The observed high–level log can be used in
combination with the low–level log generated by the system
itself to create and train a new log shifting model. Then, this
model can be used to convert arbitrary low–level logs from
the system into high–level logs. We are able to a) shift the
former low–level log (before we started the observation) or b)
the low–level log from another instance of the same system.

In short, the algorithm works as follows: The shifting model
contains the information about frequencies of the low–level
events, which were mapped to the high–level events in the
training phase (by temporal proximity & user equality). In
the shifting phase, we use sliding windows, n–grams and the
Damerau–Levenshtein distance [11] to calculate an error score
for each possible combination of mapped windows of low–
level events inside a trace. The windows of low–level events
with the lowest error score are then mapped to new high–
level events. This procedure repeats until there are no low–
level events left. The new timestamp of the high–level event is
calculated by the combination of the mapped low–level event
timestamps (min, max, or mean).

The algorithm is implemented as a ProM1 plugin, and can
also be used as a command line program (see quick start
instructions2). XES is used for the log format for the low–
level log as well as for the high–level log. The generated
log shifting model is a serializable Java class, which can be
in– and exported to and from ProM. Thus, the workflow in
the ProM plugin is as follows: Firstly, the low–level log, the
high–level log and the training parameter are used to create
the shifting model. Then, a low–level log and the previous
generated shifting model can be used to create a new high–
level log. A short introduction to the plugin can be found on
YouTube3.

III. EVALUATION AND OUTLOOK

First evaluations with the BPIC20 logs4 and synthetic cre-
ated low–level logs with different configurations, correspond-
ing to the typical characteristics of ECS low–level logs as
introduced in section I, show, that this algorithm performs
well and in a reasonable calculation time. For each activity in

1https://www.promtools.org/
2https://uni-ko-ld.de/log-shifter-quick-start
3https://youtu.be/1Uo4yEK1UgI
4https://icpmconference.org/2020/bpi-challenge/

the original logs, we created one or more low–level activities
(differs for each configuration). Then, the events in the logs
were replaced by these low–level events. Thereby, we mix at
random order these synthetic low–level events and adjust the
mean temporal distance between the events. For each low–
level log configuration, we trained multiple log shifting models
(different training parameters) and calculated the evaluation
accuracy, the train duration and the shift duration. In summary,
this algorithm performs well (>=95% accuracy) and in a
reasonable calculation time, if the training parameters are
configured correctly regarding the log properties (can be
automatically detected by hyperparameter optimization).

As outlined above, we are currently observing a high–level
log from UniConnect, an ECS based on HCL Connections,
which is the market–leading integrated ECS widely used in
practice. In the next months, we will use the log shifting
tool in the context of SPM to train a model to generate
an interpretable log that is suitable for process discovery.
The resulting model can be used for all instances of HCL
Connections. In this future work, we consider more optimiza-
tions regarding the log shifting approach. For instance, we
plan to implement hyper–parameter optimization routines for
determining the best parameter configuration. We will also
evaluate the applicability of the log shifting model to other
ECS.
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