
CPN IDE: An Extensible Replacement for CPN
Tools That Uses Access/CPN (Extended Abstract)

1st Eric Verbeek
Mathematics and Computer Science
Eindhoven University of Technology

Eindhoven, The Netherlands
h.m.w.verbeek@tue.nl, 0000-0002-1658-9679

2nd Dirk Fahland
Mathematics and Computer Science
Eindhoven University of Technology

Eindhoven, The Netherlands
d.fahland@tue.nl, 0000-0002-1993-9363

Abstract—This extended abstract introduces CPN IDE, which
replaces CPN Tools as a tool for editing and simulating
(Coloured) Petri Net models. The main advantage of CPN IDE
is that it is an extensible tool, which is needed to keep it running
and to add new features which are of interest to the process
mining community, like easily generating event logs.

Index Terms—Coloured Petri Net (CPN), CPN Tools, Ac-
cess/CPN, CPN IDE

I. FROM CPN TOOLS VIA ACCESS/CPN TO CPN IDE
A. CPN Tools

CPN Tools [1] is a tool that is well-known in the Petri
net community. CPN Tools provides a mature environment
for constructing, simulating, and performing analysis of CPN
(Coloured Petri Net) models [2]. CPN Tools consists of a
CPN simulator (the back-end) based on ML (Meta Language),
and a CPN editor (the front-end) that has been developed
in the BETA programming language [3] using the Mjølner
development system [4].

In the autumn of 2010, CPN Tools has been transferred from
the CPN Group at Aarhus University to the Mathematics and
Computer Science department of the Eindhoven University
of Technology (TU/e), The Netherlands. In this department,
CPN Tools has been used extensively in courses both as an
editor and as a simulator for both coloured Petri nets [2]
and (uncoloured) P/T nets [5] (like workflow nets [6]). These
courses include our process mining [7] courses, where CPN
Tools is used as a Petri net editor next to our process mining
tool ProM [8]. As an example, we can first discover a Petri
net from an event log with ProM, second we can edit the
discovered Petri net using CPN Tools, and third we can replay
the event log on the edited Petri net using again ProM.

Although the latest versions of CPN Tools are still working
on recent operating systems like Windows 10, we foresee that
at some point in the future changes have to be made to CPN
Tools to keep it running, and that in particular changes to the
CPN editor may be needed. The main problem with the current
CPN editor is that the language and development system used
for it (BETA and Mjølner) are rather uncommon and unlike
other languages and systems. As a result, only a few people
actually know how to change the current BETA-based CPN
editor, and it is very hard to extend CPN Tools with new
functionalities.

B. Access/CPN

This problem of using the BETA language and the Mjølner
system has already been acknowledged in [9], which also
introduced Access/CPN to alleviate it. Access/CPN wraps
the CPN simulator in a Java-based implementation of CPN
models. As a result of this, Java programs can now easily
embed the ML-based simulator.

C. CPN IDE

As CPN Tools is used in courses on process mining at
the TU/e, we did not want to wait until CPN Tools stops
working due to new or updated operating systems. Therefore,
we have developed a new tool called CPN IDE, that offers
a new JavaScript-based CPN editor on top of Access/CPN.
This CPN editor communicates through a REST1 interface
with a Java-based controller that embeds Access/CPN and that
is running as a Spring Boot2 server. When the CPN editor
is started, the Spring Boot server with the controller is also
started. As usual, Access/CPN will take care of starting an
ML-based CPN simulator when needed.

As a result, CPN IDE can be extended either on the level
of the CPN editor (using JavaScript) or on the level of the
controller (using Java).

II. A BRIEF GLANCE

Figure 1 shows a screenshot of CPN IDE while it is
simulating a workflow net discovered with ProM from an
event log. In this screenshot, tokens are present in the places
labeled “P 2”, “P 5”,“P 8” (green dots with numbers), the
transitions labeled “g” are “h” ready to be fired (green auras)
while the transition labeled “r” is being fired (red aura), which
will result in new tokens in the places labeled “P 19” and
“P 30” (red dots without numbers moving along the arcs).
The console at the bottom shows information about which
transitions were enabled, which transition is fired, and which
tokens are created for which places. At the right-hand side, we
see specific information on the selected node, which is now
the transition labeled “r” which has the id “Trans141”.

1Representational state transfer, see https://www.ics.uci.edu/∼fielding/pubs/
dissertation/rest arch style.htm, accessed on September 1, 2021)

2See https://spring.io/projects/spring-boot, accessed on September 1, 2021



Fig. 1. Simulation of a model discovered with ProM from an event log.

III. LINKS

A. Downloads

From https://cpntools.org/cpn-ide/ you can download the
latest releases for CPN IDE. The first release is CPN IDE
1.21.

B. Screencast

From https://cpntools.org/cpn-ide/ you can also access a
screencast on CPN IDE. In this screencast, we create a
workflow net for the running example from [7] handling
compensation requests, and perform a simulation on it.

C. Sources

On https://github.com/cpn-io/cpn-js/ you will find the
sources for CPN IDE. CPN IDE will be Open Source.

IV. FUTURE WORK

• Export to XES [10] At the moment, there is no easy way
to generate an event log in XES format from a running
simulation (like in the screencast). We would like to add
this functionality into CPN IDE.

• Import/export from/to PNML [11]. At the moment, CPN
IDE (and CPN Tools as well) can be used together with
ProM because ProM can import/export P/T nets from/to
CPNXML files3, which is the native file format for both
CPN IDE and CPN Tools. However, if CPN IDE could

3As from ProM 6.10, the “CPNXML export (Petri net)” plugin exports a
P/T net to the CPNXML format and the “Import Petri net from CPNXML
file” plugin imports a P/T net from a CPNXML file.

import/export workflow nets from/to PNML, then other
tools could also be used together with CPN IDE.

REFERENCES

[1] M. Westergaard and H. M. W. Verbeek. (2018) CPN Tools. [Online].
Available: https://cpntools.org/

[2] K. Jensen and L. M. Kristensen, Coloured Petri Nets Modeling and
Validation of Concurrent Systems. Springer-Verlag, 2009.

[3] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard, Object-Oriented
Programming in the BETA Programming Language. Addison-Wesley,
1993.

[4] J. L. Knudsen, M. Lofgren, O. L. Madsen, and B. Magnusson, Object-
Oriented Environments - The Mjølner Approach. Prentice Hall, 1993.

[5] W. Reisig, Petri Nets: An Introduction, ser. EATCS Monographs in
Theoretical Computer Science. Springer-Verlag, Berlin, 1985, vol. 4.

[6] W. M. P. v. d. Aalst, “The application of Petri nets to workflow
management,” The Journal of Circuits, Systems and Computers, vol. 8,
no. 1, pp. 21–66, 1998.

[7] ——, Process Mining: Data Science in Action, 2nd ed. Springer-Verlag,
2016.

[8] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. v. Dongen, and W. M. P. v. d.
Aalst, “Xes, xesame, and prom 6,” in Information System Evolution, ser.
Lecture Notes in Business Information Processing (LNBIP), P. Soffer
and E. Proper, Eds. Hammamet, Tunisia: Springer, June 7-9 2011,
vol. 72, pp. 60–75.

[9] M. Westergaard and L. M. Kristensen, “The access/cpn framework: A
tool for interacting with the cpn tools simulator,” in Applications and
Theory of Petri Nets, G. Franceschinis and K. Wolf, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 313–322.

[10] G. Acampora, A. Vitiello, B. Di Stefano, W. M. P. v. d. Aalst,
C. W. Günther, and H. M. W. Verbeek, “IEEE 1849TM: The XES
standard: The second IEEE standard sponsored by IEEE Computational
Intelligence Society,” IEEE Computational Intelligence Magazine, pp.
4–8, May 2017.

[11] J. Billington and et. al., “The Petri Net Markup Language: Concepts,
Technology, and Tools,” in Application and Theory of Petri Nets 2003,
W. Aalst and E. Best, Eds., vol. 2679, 2003, pp. 483–506.


