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Abstract—Interactive Process Drift Detection (IPDD) is a 

framework for visual analysis of process drifts. A process drift 

indicates a change in the process model occurred at some point in 

time. IPDD firstly generates process models for subparts of the 

event log using a sliding window approach. Then, it detects the 

drifts by evaluating similarity metrics calculated between adjacent 

process models; a difference in some of the metrics indicates a 

drift. The current implementation of IPDD generates the process 

models using the directly-follows graph (DFG) and applies two 

metrics: nodes and edges similarity. The user interface shows the 

drifts in the process models over time, allowing the user to visually 

understand the model changes. Also, the user can easily change the 

hyperparameters for the analysis and verify the results on the 

interface. The user interface of IPDD allows the user to evaluate 

the detected drifts by calculating the F-score metric, which is 

useful when using artificial datasets. The underlying idea is to ease 

the choice of a “good” value for the hyperparameter 

configuration, which is critical for almost any drift detection tool. 

Keywords— process drift detection, visual process analysis, 

process drift, concept drift 

I. INTRODUCTION 

Process mining aims at creating valuable knowledge about 
business processes obtained from information systems event 
data. Usually, process mining techniques assume the processes 
to be steady-state, i.e., the event data contains information from 
a unique version of the process. However, this assumption does 
not reflect the reality of the business processes, which constantly 
adapt to new regulations, improve performance, or enhance user 
experience. The situation where a process changes while being 
analyzed is named concept drift or process drift [1]. 

The change in the process can affect the ongoing instances, 
sudden or gradually. A sudden drift occurs when all the ongoing 
instances start to follow the new process model immediately. In 
a gradual drift, there is a period of time where instances from 
both versions of the process model coexist. The process drifts 
can also follow recurrent or incremental patterns. A recurrent 
drift indicates that a replaced process model can occur again. In 
an incremental drift, minor changes of the process model are 
implemented during some time. Sudden, gradual, incremental, 
and recurring are considered process drift types [2]. The process 
drift can also affect one or more perspectives of the process 

model. However, the most common perspective considered in 
the available tools is the control flow. Identifying and 
understanding the process drifts is relevant for business analysts 
because it improves their knowledge about the processes and 
enhances the quality of process mining analysis. Even when 
analysts perform offline process mining analysis, process drift 
detection can provide benefits, e.g., avoid complex discovered 
process models, improve conformance checking, or enhance 
processes based on their current state.  

Different tools for detecting process drifts from event logs 
have been proposed, but the accuracy of the detection is usually 
related to the hyperparameter configuration [3]. The ProDrift 
plugin in Apromore [4], [5] and the ConceptDrift plugin in ProM 
[2] can detect different types of drifts (sudden and gradual); 
however, the focus is the change point and information about it. 
The user has to complement the drift analysis by executing a 
more exploratory mining slicing the event log based on the 
reported change points to understand the evolution of the 
process. A more recent tool, named VDD [6], detects the four 
types of drifts and allows the user to explore the drift using the 
process model. However, the tool is based on constraints mined 
over Declare models, and it mixes DFGs with the constraints to 
explain the dynamic of the process over time. None of the 
identified tools calculate an accuracy metric in the user interface. 

Tunning the hyperparameter configuration to enhance the 
detection accuracy imposes a challenge to the proposed tools 
because the different approaches are affected by the 
hyperparameter configuration. IPDD aims to overcome this 
issue by providing an interactive user interface where the user 
quickly changes the parameter and visually evaluates the results. 
The tool provides visual process drift detection analysis by 
showing the distinct process models over time, in what we can 
consider a “replay” of the process models. IPDD also provides 
information about the differences against the previous model for 
each process model, enhancing the analysis. IPDD’s current 
implementation detects sudden drifts in the control-flow 
perspective offline, which is a limitation.  

II. IPDD MAIN FEATURES 

The IPDD framework detects the process drifts by analyzing 
the event log using a sliding window strategy. First, the user 



defines the window size based on the number of traces, and 
IPDD splits the log using tumbling windows. Then, it generates 
a model for each window and calculates the similarity metrics 
between adjacent models. The idea is to compare models mined 
from adjacent time slots using similarity metrics; when they are 
not similar, IPDD identifies a drift and characterizes the change 
based on the information provided by the metric.  

The IPDD’s current implementation mines the DFGs 
(process maps) from the traces in the time slots using the Pm4Py 
[7]. Then, the adjacent derived graphs are compared using the 
Nodes (NS) and Edges similarity (ES) metrics. NS is calculated 
using Eq. 1 [2], where 𝑛𝑝  and 𝑛𝑞 are the number of activities in 
the process maps 𝑃  and 𝑄 (derived from adjacent windows) 
respectively, and 𝑛𝑐𝑠 indicates the number of common activities 
between 𝑃 and 𝑄. ES is calculated using Eq. 2, similar to NS: 𝑒𝑝 

is the number of edges in 𝑃, 𝑒𝑞 is the number of edges in 𝑄, and 
𝑒𝑐𝑠 indicates the number of common edges in both 𝑃 and 𝑄. 

𝑁𝑆 =  2 ∗  𝑛𝑐𝑠 = (𝑛𝑝 +  𝑛𝑞)      (1) 

𝐸𝑆 =  2 ∗  𝑒𝑐𝑠 = (𝑒𝑝 +  𝑒𝑞)       (2) 

IPDD calculates both metrics, and if one or both is less than 
0, it marks the window as a drift. The F-score metric uses the 
True Positives (TP), False Positives (FP), and FN (False 
Negatives). A TP indicates a window reported as a drift 
containing a trace inputted as a real drift; an FP is counted when 
a window reporting a drift does not contain any trace informed 
as real drifts, and an FN is incremented when a window that does 
not report a drift contains any traces inputted as actual drifts.  

Fig. 1 shows the tool’s main screen, allowing users to easily 
change parameters and visually check the results. The parameter 
configuration panel is on top, where users must define the 
hyperparameter configuration before starting the analysis. After 
clicking on “Analyze Process Drifts”, users can follow the 
current status in the “Status” area below the parameters panel. 
When the analysis finishes, IPDD shows the process drift 
analysis panel. There is a timeline of windows in the upper part 
of this panel, where users can click to inspect specific windows 
of the process model. The similarity metrics information (on the 
left side) is updated for each window selected, providing 
information about the differences between the current and the 
previous model. In the example, the ES indicates a drift that is 
characterized by two edges added. After IPDD finishes the 
analysis, the user can show the evaluation panel to calculate the 
F-score metric by clicking “Evaluate results”. IPDD framework 
is described in more detail in [8]. Its source code is available in 
a public repository1, the deployed application is available in a 
public node2, and a demo video is available on YouTube3. 

III. CASE STUDIES 

Authors have proposed different tools for process drift 
detection. However, the methods are usually sensitive to the 
hyperparameter configuration. Moreover, almost all approaches 
apply windowing strategies – and defining a “good” value for 
the window size is still a challenge. Also, the adaptive 
approaches have some drawbacks; other parameters affect the 
detected drifts [3]. Our IPDD approach gives users the freedom 

 
1 https://github.com/denisesato/InteractiveProcessDriftDetectionFW  

2 http://visual-pro-drift.com.br:8050/ 

to check different hyperparameter configurations to overcome 
this challenge visually.  

The tool was presented to our research group in Curitiba 
(Brazil), including researchers from three post-graduate 
programs (Informatics, Production and Systems Engineering, 
and Health Technology). Firstly we have conducted a usability 
assessment for redesigning the user interface. Currently, we are 
working on a case study on a manufacturing scenario. The idea 
is to detect drifts in the temporal perspective of the process 
(sojourn time). The information about drifts will be used as input 
for planning the maintenance intervals on the production line.  

ACKNOWLEDGMENT 

This study was financed in part by the Coordenação de 
Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) 
- Finance Code 001 – Grant No.: 88887.321450/2019-00. 

REFERENCES 

[1] W. M. P. Van der Aalst et al., “Process Mining Manifesto,” in 
International Conference on Business Process Management BPM 2011: 
Business Process Management Workshops, 2011, vol. 99, pp. 169–194. 

[2] R. P. J. C. Bose, W. M. P. van der Aalst, I. Zliobaite, and M. Pechenizkiy, 
“Dealing With Concept Drifts in Process Mining,” IEEE Trans. Neural 
Networks Learn. Syst., vol. 25, no. 1, pp. 154–171, Jan. 2014. 

[3] S. M. Vecino, D. F. Cristiana, B. Paul, and S. Emilio, “A Survey on 
Concept Drift in Process Mining,” ACM Comput. Surv., vol. 54, no. 9, 
pp. 1–38, Oct. 2021. 

[4] A. Maaradji, M. Dumas, M. La Rosa, and A. Ostovar, “Fast and Accurate 
Business Process Drift Detection,” in International Conference on 
Business Process Management BPM 2016: Business Process 
Management, 2015, pp. 406–422. 

[5] A. Maaradji, M. Dumas, M. L. Rosa, and A. Ostovar, “Detecting Sudden 
and Gradual Drifts in Business Processes from Execution Traces,” IEEE 
Trans. Knowl. Data Eng., vol. 29, no. 10, pp. 2140–2154, 2017. 

[6] A. Yeshchenko, C. Di Ciccio, J. Mendling, and A. Polyvyanyy, “Visual 
Drift Detection for Sequence Data Analysis of Business Processes,” IEEE 
Trans. Vis. Comput. Graph., pp. 1–1, 2021. 

[7] A. Berti and S. van Zelst, “Process Mining for Python (PM4Py): Bridging 
the Gap Between Process- and Data Science.” 2019. 

[8] D. M. V. Sato, J. P. Barddal, and E. E. Scalabrin, “Interactive Process 
Drift Detection Framework,” in International Conference on Artificial 
Intelligence and Soft Computing (ICAISC), 2021, pp. 192–204. 

3 Demonstration video at: https://youtu.be/8feKd6jr8Gs 

 
Fig.1. Screenshot from the main window. 
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