
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Interactive Process Drift Detection: A Framework for

Visual Analysis of Process Drifts (Extended Abstract)

Denise Maria Vecino Sato

Graduate Program in Informatics

Pontifícia Universidade Católica

do Paraná and Instituto Federal

do Paraná

Curitiba, Brazil

0000-0003-1117-7082

Rafaela Mantovani Fontana

Department of Professional and

Technological Education

Universidade Federal do Paraná

Curitiba, Brazil

0000-0001-6350-4167

Jean Paul Barddal

Graduate Program in Informatics

Pontifícia Universidade Católica

do Paraná

Curitiba, Brazil

0000-0001-9928-854X

Edson Emilio Scalabrin

Graduate Program in Informatics

Pontifícia Universidade Católica

do Paraná

Curitiba, Brazil

0000-0002-3918-179

Abstract—Interactive Process Drift Detection (IPDD) is a

framework for visual analysis of process drifts. A process drift

indicates a change in the process model occurred at some point in

time. IPDD firstly generates process models for subparts of the

event log using a sliding window approach. Then, it detects the

drifts by evaluating similarity metrics calculated between adjacent

process models; a difference in some of the metrics indicates a

drift. The current implementation of IPDD generates the process

models using the directly-follows graph (DFG) and applies two

metrics: nodes and edges similarity. The user interface shows the

drifts in the process models over time, allowing the user to visually

understand the model changes. Also, the user can easily change the

hyperparameters for the analysis and verify the results on the

interface. The user interface of IPDD allows the user to evaluate

the detected drifts by calculating the F-score metric, which is

useful when using artificial datasets. The underlying idea is to ease

the choice of a “good” value for the hyperparameter

configuration, which is critical for almost any drift detection tool.

Keywords— process drift detection, visual process analysis,

process drift, concept drift

I. INTRODUCTION

Process mining aims at creating valuable knowledge about
business processes obtained from information systems event
data. Usually, process mining techniques assume the processes
to be steady-state, i.e., the event data contains information from
a unique version of the process. However, this assumption does
not reflect the reality of the business processes, which constantly
adapt to new regulations, improve performance, or enhance user
experience. The situation where a process changes while being
analyzed is named concept drift or process drift [1].

The change in the process can affect the ongoing instances,
sudden or gradually. A sudden drift occurs when all the ongoing
instances start to follow the new process model immediately. In
a gradual drift, there is a period of time where instances from
both versions of the process model coexist. The process drifts
can also follow recurrent or incremental patterns. A recurrent
drift indicates that a replaced process model can occur again. In
an incremental drift, minor changes of the process model are
implemented during some time. Sudden, gradual, incremental,
and recurring are considered process drift types [2]. The process
drift can also affect one or more perspectives of the process

model. However, the most common perspective considered in
the available tools is the control flow. Identifying and
understanding the process drifts is relevant for business analysts
because it improves their knowledge about the processes and
enhances the quality of process mining analysis. Even when
analysts perform offline process mining analysis, process drift
detection can provide benefits, e.g., avoid complex discovered
process models, improve conformance checking, or enhance
processes based on their current state.

Different tools for detecting process drifts from event logs
have been proposed, but the accuracy of the detection is usually
related to the hyperparameter configuration [3]. The ProDrift
plugin in Apromore [4], [5] and the ConceptDrift plugin in ProM
[2] can detect different types of drifts (sudden and gradual);
however, the focus is the change point and information about it.
The user has to complement the drift analysis by executing a
more exploratory mining slicing the event log based on the
reported change points to understand the evolution of the
process. A more recent tool, named VDD [6], detects the four
types of drifts and allows the user to explore the drift using the
process model. However, the tool is based on constraints mined
over Declare models, and it mixes DFGs with the constraints to
explain the dynamic of the process over time. None of the
identified tools calculate an accuracy metric in the user interface.

Tunning the hyperparameter configuration to enhance the
detection accuracy imposes a challenge to the proposed tools
because the different approaches are affected by the
hyperparameter configuration. IPDD aims to overcome this
issue by providing an interactive user interface where the user
quickly changes the parameter and visually evaluates the results.
The tool provides visual process drift detection analysis by
showing the distinct process models over time, in what we can
consider a “replay” of the process models. IPDD also provides
information about the differences against the previous model for
each process model, enhancing the analysis. IPDD’s current
implementation detects sudden drifts in the control-flow
perspective offline, which is a limitation.

II. IPDD MAIN FEATURES

The IPDD framework detects the process drifts by analyzing
the event log using a sliding window strategy. First, the user

defines the window size based on the number of traces, and
IPDD splits the log using tumbling windows. Then, it generates
a model for each window and calculates the similarity metrics
between adjacent models. The idea is to compare models mined
from adjacent time slots using similarity metrics; when they are
not similar, IPDD identifies a drift and characterizes the change
based on the information provided by the metric.

The IPDD’s current implementation mines the DFGs
(process maps) from the traces in the time slots using the Pm4Py
[7]. Then, the adjacent derived graphs are compared using the
Nodes (NS) and Edges similarity (ES) metrics. NS is calculated
using Eq. 1 [2], where 𝑛𝑝 and 𝑛𝑞 are the number of activities in
the process maps 𝑃 and 𝑄 (derived from adjacent windows)
respectively, and 𝑛𝑐𝑠 indicates the number of common activities
between 𝑃 and 𝑄. ES is calculated using Eq. 2, similar to NS: 𝑒𝑝

is the number of edges in 𝑃, 𝑒𝑞 is the number of edges in 𝑄, and
𝑒𝑐𝑠 indicates the number of common edges in both 𝑃 and 𝑄.

𝑁𝑆 = 2 ∗ 𝑛𝑐𝑠 = (𝑛𝑝 + 𝑛𝑞) (1)

𝐸𝑆 = 2 ∗ 𝑒𝑐𝑠 = (𝑒𝑝 + 𝑒𝑞) (2)

IPDD calculates both metrics, and if one or both is less than
0, it marks the window as a drift. The F-score metric uses the
True Positives (TP), False Positives (FP), and FN (False
Negatives). A TP indicates a window reported as a drift
containing a trace inputted as a real drift; an FP is counted when
a window reporting a drift does not contain any trace informed
as real drifts, and an FN is incremented when a window that does
not report a drift contains any traces inputted as actual drifts.

Fig. 1 shows the tool’s main screen, allowing users to easily
change parameters and visually check the results. The parameter
configuration panel is on top, where users must define the
hyperparameter configuration before starting the analysis. After
clicking on “Analyze Process Drifts”, users can follow the
current status in the “Status” area below the parameters panel.
When the analysis finishes, IPDD shows the process drift
analysis panel. There is a timeline of windows in the upper part
of this panel, where users can click to inspect specific windows
of the process model. The similarity metrics information (on the
left side) is updated for each window selected, providing
information about the differences between the current and the
previous model. In the example, the ES indicates a drift that is
characterized by two edges added. After IPDD finishes the
analysis, the user can show the evaluation panel to calculate the
F-score metric by clicking “Evaluate results”. IPDD framework
is described in more detail in [8]. Its source code is available in
a public repository1, the deployed application is available in a
public node2, and a demo video is available on YouTube3.

III. CASE STUDIES

Authors have proposed different tools for process drift
detection. However, the methods are usually sensitive to the
hyperparameter configuration. Moreover, almost all approaches
apply windowing strategies – and defining a “good” value for
the window size is still a challenge. Also, the adaptive
approaches have some drawbacks; other parameters affect the
detected drifts [3]. Our IPDD approach gives users the freedom

1 https://github.com/denisesato/InteractiveProcessDriftDetectionFW

2 http://visual-pro-drift.com.br:8050/

to check different hyperparameter configurations to overcome
this challenge visually.

The tool was presented to our research group in Curitiba
(Brazil), including researchers from three post-graduate
programs (Informatics, Production and Systems Engineering,
and Health Technology). Firstly we have conducted a usability
assessment for redesigning the user interface. Currently, we are
working on a case study on a manufacturing scenario. The idea
is to detect drifts in the temporal perspective of the process
(sojourn time). The information about drifts will be used as input
for planning the maintenance intervals on the production line.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)
- Finance Code 001 – Grant No.: 88887.321450/2019-00.

REFERENCES

[1] W. M. P. Van der Aalst et al., “Process Mining Manifesto,” in
International Conference on Business Process Management BPM 2011:
Business Process Management Workshops, 2011, vol. 99, pp. 169–194.

[2] R. P. J. C. Bose, W. M. P. van der Aalst, I. Zliobaite, and M. Pechenizkiy,
“Dealing With Concept Drifts in Process Mining,” IEEE Trans. Neural
Networks Learn. Syst., vol. 25, no. 1, pp. 154–171, Jan. 2014.

[3] S. M. Vecino, D. F. Cristiana, B. Paul, and S. Emilio, “A Survey on
Concept Drift in Process Mining,” ACM Comput. Surv., vol. 54, no. 9,
pp. 1–38, Oct. 2021.

[4] A. Maaradji, M. Dumas, M. La Rosa, and A. Ostovar, “Fast and Accurate
Business Process Drift Detection,” in International Conference on
Business Process Management BPM 2016: Business Process
Management, 2015, pp. 406–422.

[5] A. Maaradji, M. Dumas, M. L. Rosa, and A. Ostovar, “Detecting Sudden
and Gradual Drifts in Business Processes from Execution Traces,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 10, pp. 2140–2154, 2017.

[6] A. Yeshchenko, C. Di Ciccio, J. Mendling, and A. Polyvyanyy, “Visual
Drift Detection for Sequence Data Analysis of Business Processes,” IEEE
Trans. Vis. Comput. Graph., pp. 1–1, 2021.

[7] A. Berti and S. van Zelst, “Process Mining for Python (PM4Py): Bridging
the Gap Between Process- and Data Science.” 2019.

[8] D. M. V. Sato, J. P. Barddal, and E. E. Scalabrin, “Interactive Process
Drift Detection Framework,” in International Conference on Artificial
Intelligence and Soft Computing (ICAISC), 2021, pp. 192–204.

3 Demonstration video at: https://youtu.be/8feKd6jr8Gs

Fig.1. Screenshot from the main window.

https://github.com/denisesato/InteractiveProcessDriftDetectionFW

