PaPPI: Privacy-aware Process Performance Indicators

Martin Kabierski, Stephan A. Fahrenkrog-Petersen, Glenn Dittmann, Matthias Weidlich

Humboldt-Universität zu Berlin, Berlin, Germany

{martin.kabierski,stephan.fahrenkrog-petersen,glenn.dittmann,matthias.weidlich}@hu-berlin.de

Abstract—The evaluation of recorded process executions using process performance indicators, short PPIs, serves as a main driver of process optimization and process monitoring. Yet, since many processes inadvertently record information about individuals involved in said processes, the analysis of such data is bound by data protection regulations, such as the GDPR and the CCPA. To enable the analysis of the respective data, while conforming to privacy regulations, anonymization techniques can be employed. In this work, we propose PaPPI, Privacy-aware Process Performance Indicators, a Java-based library for the definition and evaluation of process performance indicators under differential privacy. Our toolkit builds upon and extends the PPINOT library for process performance indicators, maintaining the well-established syntax and semantics of PPINOT. This way, we achieve an easy-to-use integration of privacy protection in the computation of process performance indicators.

Index Terms—process mining, performance indicators, privacy-awareness, differential privacy

I. INTRODUCTION

The evaluation of recorded process executions is a main driver for the analysis of process-centric information systems. Following the common BPM life cycle, such evaluations are the backbone of any process improvement initiative and guide the re-design of processes. The analysis of recorded process executions may be based on techniques for conformance checking [1], compliance verification [2], or the evaluation of quantifiable metrics of a processes efficiency and effectiveness, which are commonly referred to as process performance indicators (PPIs) [3]. These metrics are defined by the process owner in order to communicate and monitor certain high-level goals. Their evaluation over the recorded process executions, which is typically available in the form of event logs, enables conclusions on the extent to which these goals are met.

The PPINOT metamodel [3] has been proposed as a general framework for the definition and evaluation of PPIs. According to the PPINOT model, PPIs are composed from atomic building blocks, so-called measure definitions. These measures are aggregated in a tree-like manner to evaluate complex functions defined over the process instances and their attributes. In Fig. 1, we illustrate the PPINOT model with the PPI “Average Duration” that is included in the public PPINOT example repository. It is based on a measure that captures the time between the occurrences of two types of events with the data recorded for one process execution. These values are then aggregated over all process executions by computing the arithmetic mean.

The recorded process executions over which PPIs are defined and evaluated often include sensitive information about individuals involved in the process, such as knowledge workers in traditional business processes or patients in clinical pathways. Any handling and analysis of this data has to adhere to data protection regulations, such as the GDPR or the CCPA [4]. To this end, anonymization techniques can be employed to protect the privacy of individuals, while still supporting the evaluation of the respective data.

In recent work, we proposed a framework for privacy protection during the evaluation of PPIs defined using the PPINOT metamodel [6]. Specifically, our framework provides a privacy guarantee in terms of the well-established notion of differential privacy [5]. For this purpose, we proposed multiple privacy-preserving release mechanisms, i.e. functions, that add controlled noise to the true result of a function. In this demo, we present PaPPI, Privacy-aware Process Performance Indicators, a Java-based library that implements the aforementioned framework. PaPPI has been designed such that it wraps the the public PPINOT library, so that users can rely on the established syntax and semantics for the definition of PPIs, while still benefiting from the privacy protection offered by our techniques. In particular, PaPPI enables the privacy-aware evaluation for any PPI, that can be defined using the PPINOT syntax. As such, PaPPI provides an easy-to-use way to include privacy considerations in the quantitative analysis of process executions. While PaPPI has not been used in practice yet, we validated its applicability for real-life scenarios in a case study on a publicly available log file [6].

We first illustrate the definition of PPIs in our toolkit (§II), before turning to their evaluation (§III). We then elaborate on the availability of our library (§IV), before we conclude (§V).

II. DEFINING PPIs

The definition of PPIs in PaPPI closely follows the syntax of PPINOT, i.e. the different types of measure definitions are composed in a tree-like structure to form more complex evaluation functions. The MeasureDefinition classes of PPINOT are extended to include, for each multi-instance

1https://github.com/isa-group/ppinot-example
Alg. 1: Definition and evaluation of a PPI in PaPPI.

measure in the defined tree, additional information about whether and how it should be privatized during evaluation. In particular, if it shall be privatized, the value of the privacy parameter ϵ, the chosen differentially private release mechanism, and a method for estimating the bounds of the input data need to be defined. In Alg. 1, starting at line 5, the definition of the PPI of Fig. 1 using PaPPI is shown. Here, we specify that the evaluation of the aggregation measure shall be privatized using $\epsilon = 0.1$ with a boundary estimation based on the minimum and maximum value of the inputs, and the Laplace mechanism to calculate the Average of the inputs.

III. EVALUATING PPIs

For the subsequent evaluation of PPIs, we extended the LogMeasureEvaluator class of PPI NOT, to enable the invocation of the specified privatized measures during evaluation. Using this new evaluator, the computation of a given PPI, or a set thereof, can be conducted as shown in lines 21 and 22 of Alg. 1. Here, we specify that the PPI privatizedAvg shall be evaluated in monthly time segments for the respective log.

For a given PPI, the evaluator first determines, whether the provided PPI definition is admissible for privatization, i.e. if the evaluation of said PPI with the specified measures to privatize, would properly protect each of the logs accessed information. Should this not be the case, the evaluation stops, informing the user about the problematic PPI. The privatized results can either be printed or saved in a .csv-file, such as the one shown in Fig. 2, that has been generated by Alg. 1. The file contains for each PPI and time segment the value obtained by the privatized evaluation.

Concerning the release mechanisms, we currently provide implementations of the mechanisms proposed in [6], i.e., the Laplace mechanism and the Interval Mechanism for aggregation measures, as well as the Sample-and-Aggregate mechanism for multi-instance derived measures. Due to the implementation utilizing a factory pattern for invoking the evaluation of the measure definitions of the PPI based on the aforementioned specifications, it is easy to extend the implementation with additional release mechanisms, by providing the factory with a mapping from a chosen identifier of the mechanism in the PPI definition to its implementation.

IV. AVAILABILITY

The library is publicly available on GitHub\(^2\) under the MIT license. There, we also provide further guidance for installing the library and adding new release mechanisms. Furthermore, we provide a screencast of the definition and evaluation of PPIs using the library.

We plan to extend the library with additional features, such as an automated selection of release mechanisms and the support of data-driven privacy-aware PPI definitions from structured file formats.

V. CONCLUSION

In this demo, we proposed PaPPI, a Java-based library, that serves as a wrapper around the PPI NOT library, adding privacy protection in the form of differential privacy to the definition and evaluation of PPIs. We re-used and extended the concepts of the PPI NOT meta model, so that privacy-protection can be easily integrated for users familiar with its definition and evaluation syntax.

ACKNOWLEDGMENTS

This work has received funding from the Deutsche Forschungsgemeinschaft (DFG), grant number 421921612.

REFERENCES

\(^2\)https://github.com/MartinKabierski/privacy-aware-ppinot

\(^3\)https://youtu.be/i_WnR-RevNE

Figure 2: Output generated by Alg. 1.